在三棱柱A1B1C1-ABC中,A1A⊥平面ABC,A1A=AB=AC=2,BC=2
2
,點(diǎn)D是BC的中點(diǎn).
(Ⅰ)求證:A1B∥平面AC1D
(Ⅱ)求點(diǎn)B到平面AC1D的距離.
考點(diǎn):點(diǎn)、線、面間的距離計(jì)算,直線與平面平行的判定
專題:綜合題,空間位置關(guān)系與距離
分析:(Ⅰ)連接A1C交AC1于E,連DE,則E為A1C中點(diǎn),欲證A1B∥平面AC1D,根據(jù)直線與平面平行的判定定理可知只需證A1B∥平面AC1D內(nèi)一直線平行,而DE∥A1B,A1B?平面AC1D,DE?平面AC1D,滿足定理?xiàng)l件;
(Ⅱ)利用等體積,可求點(diǎn)B到平面AC1D的距離.
解答: (Ⅰ)證明:連接A1C,設(shè)與AC1交于點(diǎn)E,連接ED
在△A1BC中,E為A1C的中點(diǎn),D為BC的中點(diǎn)
∴ED∥A1B…(3分)
∵A1B?平面AC1D
ED?平面AC1D
∴A1B∥平面AC1D…(5分)
(Ⅱ)解:∵A1A⊥平面ABC
∴C1C⊥平面ABC
在△ABC中,AB2+AC2=BC2,得∠BAC=
π
2

∵點(diǎn)D是BC 的 中點(diǎn)
∴S△ABD=
1
2
S△ABC
=1
VC1-ABD=
1
3
S△ABDC1C
=
2
3
…(8分)
VB-AC1D=VC1-ABD=
2
3

設(shè)B到平面AC1D的距離為h,
1
3
S△AC1D•h
=
2
3
…(10分)
∵C1C⊥AD,等腰△ABC中,AD⊥BC
又C1C∩BC=C
∴AD⊥平面BCC1B1
∴AD⊥DC1
可求AD=
2
,C1D=
6
,S△AC1D=
3

∴h=
2
3
3
…(12分)
點(diǎn)評:本題主要考查了直線與平面平行的判定,以及點(diǎn)B到平面AC1D的距離,考查空間想象能力、運(yùn)算能力和推理論證能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

“整數(shù)是自然數(shù),-3是整數(shù),-3是自然數(shù).”上述推理( 。
A、小前提錯(cuò)B、結(jié)論錯(cuò)
C、正確D、大前提錯(cuò)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={-2,0,3,4},B={x|x2-2x-3=0},則A∩B=( 。
A、{0}B、{3}
C、{0,2}D、{0,2,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知VA,VB,VC兩兩垂直,VA=VB=VC=a.
(1)求平面ABC和平面ABV所成的二面角的余弦值;
(2)求三棱錐V-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=alnx+
a+1
2
x2+1,
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)當(dāng)-1<a<0時(shí),不等式f(x)>1+
a
2
ln(-a)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}滿足:a2=4,公比q=2,數(shù)列{bn}的前n項(xiàng)和為Sn,且Sn=
4
3
bn-
2
3
an+
2
3
(n∈N*).
(1)求數(shù)列{an}和數(shù)列{bn}的通項(xiàng)an和bn
(2)設(shè)Pn=
an
Sn
(n∈N*),證明:
n
i=1
Pi
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=
1-(
1
2
)x
,求該函數(shù)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知三棱錐A-PBC中,AC⊥BC,AP⊥PC,M為AB的中點(diǎn),D為PB的中點(diǎn),且△PMB為正三角形.
(1)求證:BC⊥平面APC;
(2)若BC=3,AB=10,求二面角P-MC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD是邊長為2
2
的正方形,其他四個(gè)側(cè)面是側(cè)棱長為
5
的等腰三角形,過棱PD的中點(diǎn)E作截面EFGH,使截面EFGH∥平面PBC,且截面EFGH分別交四棱錐各棱F、G、H.
(Ⅰ)證明:EF∥平面ABCD;
(Ⅱ)求四棱錐P-ABCD的體積.

查看答案和解析>>

同步練習(xí)冊答案