精英家教網 > 高中數學 > 題目詳情

【題目】給出下列四個命題:

①命題“x∈R,cosx>0”的否定是“x0∈R,cosx0≤0”;

②若0<a<1,則函數f(x)=x2ax-3只有一個零點;

③函數y=2sinxcosx上是單調遞減函數;

④若lga+lgb=lg(ab),則ab的最小值為4.

其中真命題的序號是________

【答案】①④

【解析】由全稱命題的否定是特稱命題知①為真命題.

在同一直角坐標系內作出y3x2,yax(0<a<1)的圖象如圖所示.由圖知兩函數圖象有兩個交點,則函數f(x)x2ax3有兩個零點,故②為假命題.

y2sinxcosxsin2x

時,

y2sinxcosx上是增函數,因此③為假命題.

④中由lgalgblg(ab)知,

ababa>0b>0.

,

所以令abt(t>0),

4tt2,即t≥4,因此④為真命題.

故答案為:①④

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,已知橢圓 的離心率,左頂點為,過點作斜率為的直線交橢圓于點,交軸于點

(1)求橢圓的方程;

(2)已知的中點,是否存在定點,對于任意的都有,若存在,求出點

坐標;若不存在說明理由;

(3)若過點作直線的平行線交橢圓于點,求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

在直角坐標系中,曲線的參數方程是為參數)以原點為極點, 軸正半軸為極軸,并取與直角坐標系相同的單位長度,建立極坐標系,曲線的極坐標方程是.

(1)求曲線, 的直角坐標方程;

(2)若、分別是曲線上的任意點,求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,直線與拋物線相切于點.

(1)求實數的值;

(2)求以點為圓心,且與拋物線的準線相切的圓的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設數列{an}的各項都為正數,其前n項和為Sn,已知對任意n∈N*,Snan的等差中項.

(1)證明:數列{an}為等差數列;

(2)若bn=-n+5,求{an·bn}的最大項的值并求出取最大值時n的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中, 底面 , , 為棱的中點.

)求證:

)求證:平面平面

)試判斷與平面是否平行?并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某住宅小區(qū)為了使居民有一個優(yōu)雅舒適的生活環(huán)境,計劃建一個八邊形的休閑小區(qū),它的主體造型的平面圖是由兩個相同的矩形ABCDEFGH構成的面積為200平方米的十字型地域.現計劃在正方形MNPQ上建花壇,造價為4200/平方米,在四個相同的矩形上(圖中陰影部分)鋪花崗巖地坪,造價為210/平方米,再在四個空角上鋪草坪,造價為80/平方米.

1)設總造價為S元,AD的邊長為x米,DQ的邊長為y米,試建立S關于x的函數關系式;

2)計劃至少要投入多少元,才能建造這個休閑小區(qū).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設等差數列的前項和為,數列的前項和為,下列說法錯誤的是( )

A. 有最大值,則也有最大值

B. 有最大值,則也有最大值

C. 若數列不單調,則數列也不單調

D. 若數列不單調,則數列也不單調

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知奇函數fx=a-x|x|,常數aR,且關于x的不等式mx2+mf[fx]對所有的x[-2,2]恒成立,則實數m的取值范圍是______

查看答案和解析>>

同步練習冊答案