已知數(shù)列{an}為等比數(shù)列,其前n項和為Sn,已知a1+a4=-
7
16
,且有S1,S3,S2成等差;
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)已知bn=n(n∈N+),記Tn=|
b1
a1
|+|
b2
a2
|+|
b3
a3
|+…+|
bn
an
|,求Tn
考點:數(shù)列的求和,等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:(Ⅰ)設(shè)出等比數(shù)列的公比q,由S1,S3,S2成等差列式求得q,結(jié)合a1+a4=-
7
16
求得首項,則數(shù)列{an}的通項公式可求;
(Ⅱ)把an、bn代入|
bn
an
|,整理后利用錯位相減法求Tn
解答: 解:(Ⅰ)設(shè)等比數(shù)列{an}的公比為q,
∵S1,S3,S2成等差,
∴2(a1+a1q+a1q2)=a1+a1+a1q.
整理得:2a1(1+q+q2)=a1(2+q).
∵a1≠0,
∴2+2q+2q2=2+q.
∴2q2+q=0,
又q≠0,∴q=-
1
2

a1+a4=a1(1+q3)=-
7
16
,
把q=-
1
2
代入后可得a1=-
1
2

an=a1qn-1=(-
1
2
)×(-
1
2
)n-1
=(-
1
2
)n
;
(Ⅱ)∵bn=n,an=(-
1
2
)n

|
bn
an
|=|
n
(-
1
2
)n
|=n•2n
,
Tn=1×21+2×22+3×23+…+n•2n
2Tn=1×22+2×23+3×24+…+(n-1)•2n+n•2n+1
∴-Tn=2+22+23+…+2n-n•2n+1=
2(1-2n)
1-2
-n•2n+1

Tn=(n-1)•2n+1+2
點評:本題考查了等差數(shù)列的性質(zhì),考查了等比數(shù)列的通項公式,訓(xùn)練了錯位相減法求數(shù)列的和,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

曲線f(x)=x3+x-2在點P處的切線的斜率為4,則P點的坐標為( 。
A、(1,0)
B、(1,0))或(-1,-4)
C、(1,8)
D、(1,8)或(-1,-4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
2x+x-a
=x(a∈R)在[-1,1]上有解,則a的取值范圍是( 。
A、[1,2]
B、[-
1
2
,1
]
C、[1,3]
D、[-
1
2
,3
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A,B,C三點不共線,空間內(nèi)任一點O滿足
OP
=x
OA
+y
OB
+z
OC
(x,y,z∈R),則“x+y+z=1”是“點P在由A,B,C所確定的平面內(nèi)”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

向量
a
=(x,1),
b
=(1,2-x),
a
b
,則|
a
|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四棱錐P-ABCD,底面ABCD是∠A=60°的菱形且PD=AD=2,又PD⊥底面ABCD,點M、N分別是棱AD、PC的中點.
(1)證明:DN∥平面PMB;
(2)證明:平面PMB⊥平面PAD;
(3)求點M到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列一些關(guān)于數(shù)列{an}的命題:
①若{an}既是等差數(shù)列,又是等比數(shù)列,則{an}一定是常數(shù)數(shù)列;
②若{an}是等比數(shù)列,則數(shù)列{an+an+1}一定也是等比數(shù)列;
③若{an}滿足遞推公式an+1=an•q,則{an}一定是等比數(shù)列;
④若{an}的前n項和Sn=qn-1,則{an}一定是等比數(shù)列.
其中正確的有
 
(填寫序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z滿足z•(1-i)=2-i(i為虛數(shù)單位),則復(fù)數(shù)z=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,b=1,c=
2
,且
OA
+
AC
+
OB
=
0
(O是此三角形外心),則
AB
AO
=( 。
A、-2B、-1C、1D、2

查看答案和解析>>

同步練習(xí)冊答案