17.已知集合A={x|(x+2)(x-6)<0},B={-3,5,6,8}則A∩B等于( 。
A.{-3,5}B.{-3}C.{5}D.?

分析 由一元二次不等式的解法求出集合A,由交集的運算求出A∩B.

解答 解:∵集合A={x|(x+2)(x-6)<0}={x|-2<x<6},
且B={-3,5,6,8},
∴A∩B={5},
故選C.

點評 本題考查了交集及其運算,以及一元二次不等式的解法,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.圖中的陰影表示的集合中是( 。
A.A∩∁UBB.B∩∁UAC.U(A∩B)D.U(A∪B)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若函數(shù)f(x)=axsinx-$\frac{3}{2}({a∈R})$,且在區(qū)間$[{0,\frac{π}{2}}]$上的最大值為$\frac{π-3}{2}$,則實數(shù)a的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,我海監(jiān)船在D島海域例行維權(quán)巡航,某時刻航行至A處,此時測得其東北方向與它相距32海里的B處有一外國船只,且D島位于海監(jiān)船正東28$\sqrt{2}$海里處.
(1)求此時該外國船只與D島的距離;
(2)觀測中發(fā)現(xiàn),此外國船只正以每小時8海里的速度沿正南方向航行,為了將該船攔截在離D島24海里處,不讓其進(jìn)入D島24海里內(nèi)的海域,試確定海監(jiān)船的航向,并求其速度的最小值.(參考數(shù)據(jù):sin36°52'≈0.6,sin53°08'≈0.8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若復(fù)數(shù)z的共軛復(fù)數(shù)$\overline z$滿足$({1+i})•\overline z=3+i$,則復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)的點位于第一象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知等差數(shù)列{an}的前n項和為Sn,且3a3=a6+4若S5<10,則a2的取值范圍是( 。
A.(-∞,2)B.(-∞,0)C.(1,+∞)D.(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知右焦點為F(c,0)的橢圓M:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{3}$=1(a>0)關(guān)于直線x=c對稱的圖形過坐標(biāo)原點.
(1)求橢圓M的方程;
(2)過點(4,0)且不垂直于y軸的直線與橢圓M交于P,Q兩點,點Q關(guān)于x軸的對稱原點為E,證明:直線PE與x軸的交點為F.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知右焦點為F(c,0)的橢圓M:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)過點$(1,\frac{3}{2})$,且橢圓M關(guān)于直線x=c對稱的圖形過坐標(biāo)原點.
(1)求橢圓M的方程;
(2)過點(4,0)且不垂直于y軸的直線與橢圓M交于P,Q兩點,點Q關(guān)于x軸的對稱原點為E,證明:直線PE與x軸的交點為F.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知集合P={1,2,3,4},則集合Q={x-y|x∈P,y∈P}中所含元素的個數(shù)是( 。
A.16B.9C.7D.5

查看答案和解析>>

同步練習(xí)冊答案