【題目】已知函數(shù),其中是自然數(shù)的底數(shù),.
(1)當(dāng)時(shí),解不等式;
(2)若在上是單調(diào)增函數(shù),求的取值范圍;
(3)當(dāng)時(shí),求整數(shù)的所有值,使方程在上有解.
【答案】(1)(2)(3){-3,1}
【解析】
試題(1)利用,將不等式轉(zhuǎn)化為二次不等式進(jìn)行求解;(2)根據(jù)在區(qū)間D上遞增等價(jià)于在區(qū)間D上恒成立;(3)構(gòu)造函數(shù),利用零點(diǎn)存在定理進(jìn)行求解.
試題解析:(Ⅰ)∵ex>0,∴當(dāng)f(x)>0時(shí)即ax2+x>0,
又∵a<0,∴原不等式可化為x(x+)<0,∴f(x)>0的解集為(0,-);
(Ⅱ)∵f(x)=(ax2+x)ex,∴f,(x)=(2ax+1)ex+(ax2+x)ex=[ax2+(2a+1)x+1]ex,
①當(dāng)a=0時(shí),f,(x)=(x+1)ex,∵在[-1,1]上恒成立,當(dāng)且僅當(dāng)x=-1時(shí)取“=”,
∴a=0滿足條件;
②當(dāng)a≠0時(shí),令g(x)=ax2+(2a+1)x+1,
∵△=(2a+1)2-4a=4a2+1>0,
∴g(x)=0有兩個(gè)不等的實(shí)根x1、x2,
不妨設(shè)x1>x2,因此f(x)有極大值和極小值;
若a>0,∵g(-1)g(0)=-a<0,∴f(x)在(-1,1)內(nèi)有極值點(diǎn),∴f(x)在[-1,1]上不單調(diào);
若a<0,則x1>0>x2,∵g(x)的圖象開口向下,要使f(x)在[-1,1]單調(diào)遞增,由g(0)=1>0,
∴即,∴-≤a≤0;綜上可知,a的取值范圍是[-,0];
(Ⅲ)當(dāng)a=0時(shí),方程f(x)=x+2為xex=x+2,
∵ex>0,∴x=0不是原方程的解,
∴原方程可化為ex--1=0;
令h(x)=ex--1,∵h(yuǎn),(x)=ex+>0在x∈(-∞0)∪(0+∞)時(shí)恒成立,
∴h(x)在(-∞,0)和(0,+∞)上是單調(diào)增函數(shù);又h(1)=e-3<0,h(2)=e2-2>0,
h(-3)=e-3<0,h(-2)=e-2>0,
∴方程f(x)=x+2有且只有兩個(gè)實(shí)根,且分別在區(qū)間[1,2]和[-3,-2]上,
所以,整數(shù)k的所有值為{-3,1}.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知是定義在上的奇函數(shù),求實(shí)數(shù)、的值;
(2)已知是定義在上的函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的右焦點(diǎn)為,上頂點(diǎn)為,直線的斜率為,且原點(diǎn)到直線的距離為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若不經(jīng)過點(diǎn)的直線:與橢圓交于兩點(diǎn),且與圓相切.試探究的周長(zhǎng)是否為定值,若是,求出定值;若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)口袋中裝有5個(gè)黑球和3個(gè)白球,這些球除顏色外完全相同,從中摸出3個(gè)球,則摸出白球的個(gè)數(shù)多于黑球個(gè)數(shù)的概率為
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知p:2x2﹣3x+1≤0,q:x2﹣(2a+1)x+a(a+1)≤0
(1)若a=,且p∧q為真,求實(shí)數(shù)x的取值范圍.
(2)若p是q的充分不必要條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某超市計(jì)劃按月訂購(gòu)一種飲料,每天進(jìn)貨量相同,進(jìn)貨成本每瓶3元,售價(jià)每瓶5元,每天未售出的飲料最后打4折當(dāng)天全部處理完根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫單位:有關(guān)如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間,需求量為300瓶;如果最高氣溫低于20,需求量為100瓶為了確定六月份的訂購(gòu)計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得到下面的頻數(shù)分布表:
最高氣溫 | ||||||
天數(shù) | 2 | 16 | 36 | 25 | 7 | 4 |
以最高氣溫位于各區(qū)間的頻率代替最高氣溫位于該區(qū)間的概率.
Ⅰ求六月份這種飲料一天的需求量單位:瓶的分布列,并求出期望EX;
Ⅱ設(shè)六月份一天銷售這種飲料的利潤(rùn)為單位:元,且六月份這種飲料一天的進(jìn)貨量為單位:瓶,請(qǐng)判斷Y的數(shù)學(xué)期望是否在時(shí)取得最大值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,等邊△ABC中,AC=4,D是邊AC上的點(diǎn)(不與A,C重合),過點(diǎn)D作DE∥BC交AB于點(diǎn)E,沿DE將△ADE向上折起,使得平面ADE⊥平面BCDE,如圖2所示.
(1)若異面直線BE與AC垂直,確定圖1中點(diǎn)D的位置;
(2)證明:無論點(diǎn)D的位置如何,二面角D﹣AE﹣B的余弦值都為定值,并求出這個(gè)定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方體ABCD-A1B1C1D1的棱長(zhǎng)為2,E為棱CC1的中點(diǎn),點(diǎn)M在正方形BCC1B1內(nèi)運(yùn)動(dòng),且直線AM//平面A1DE,則動(dòng)點(diǎn)M 的軌跡長(zhǎng)度為( )
A. B. π C. 2 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有形狀和大小完全相同的小球裝在三個(gè)盒子里,每個(gè)盒子裝個(gè).其中第一個(gè)盒子中有個(gè)球標(biāo)有字母,有個(gè)球標(biāo)有字母;第二個(gè)盒子中有個(gè)紅球和個(gè)白球;第三個(gè)盒子中有個(gè)紅球和個(gè)白球.現(xiàn)按如下規(guī)則進(jìn)行試驗(yàn):先在第一個(gè)盒子中隨機(jī)抽取一個(gè)球,若取得字母的球,則在第二個(gè)盒子中任取一球;若取得字母的球,則在第三個(gè)盒子中任取一球.
(I)若第二次取出的是紅球,則稱試驗(yàn)成功,求試驗(yàn)成功的概率;
(II)若第二次在第二個(gè)盒子中取出紅球,則得獎(jiǎng)金元,取出白球則得獎(jiǎng)金元.若第二次在第三個(gè)盒子中取出紅球,則得獎(jiǎng)金元,取出白球則得獎(jiǎng)金元.求某人在一次試驗(yàn)中,所得獎(jiǎng)金的分布列和期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com