已知關(guān)于x的不等式k(x-2)>x+6
(1)解該不等式;
(2)若1不是不等式的解,0是不等式的解,求k的取值范圍.
考點(diǎn):其他不等式的解法
專題:不等式的解法及應(yīng)用
分析:(1)將原不等式轉(zhuǎn)化為(k-1)x>2k+6,通過對(duì)x的系數(shù)k-1符號(hào)的討論,即可求得不等式的解集;
(2)依題意,解不等式-2k>6與k(1-2)≤1+6,取其交集即可求得k的取值范圍.
解答: 解:(1)∵k(x-2)>x+6,
∴(k-1)x>2k+6,
當(dāng)k=1時(shí),x∈∅;
當(dāng)k>1時(shí),x>
2k+6
k-1
;
當(dāng)k<1時(shí),x<
2k+6
k-1
;
綜上所述,k<1時(shí),不等式的解集為{x|x<
2k+6
k-1
};k>1時(shí),不等式的解集為{x|x>
2k+6
k-1
};當(dāng)k=1時(shí),x∈∅;
(2)∵0是不等式的解,
∴-2k>6,整理得:k<-3;①
又1不是不等式的解,
∴k(1-2)≤1+6,整理得:k≥-7;②
由①②得:-7≤k<-3.
即k的取值范圍為[-7,-3).
點(diǎn)評(píng):本題考查含參數(shù)的不等式的解法,通過轉(zhuǎn)化后分類討論是關(guān)鍵,考查化歸思想、分類討論思想與方程思想的綜合應(yīng)用,考查運(yùn)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=(
1
2
)2x-x2
的值域?yàn)椋ā 。?/div>
A、(0,2]
B、(-∞,
1
2
]
C、(0,
1
2
]
D、[
1
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)空間幾何體的三視圖如圖,該幾何體的體積為16π+
8
5
3
則正視圖與側(cè)視圖中的x的值為(  )
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=3sin(
x
2
+
π
3
)的圖象可由函數(shù)y=3sinx經(jīng)(  )變換而得.
A、先把橫坐標(biāo)擴(kuò)大到原來的兩倍(縱坐標(biāo)不變),再向左平移
π
6
個(gè)單位
B、先把橫坐標(biāo)縮短到原來的
1
2
倍(縱坐標(biāo)不變),再向右平移
π
3
個(gè)單位
C、先向右平移
π
3
個(gè)單位,再把橫坐標(biāo)縮短到原來的
1
2
倍(縱坐標(biāo)不變)
D、先向左平移
π
3
個(gè)單位,再把橫坐標(biāo)擴(kuò)大到原來的兩倍(縱坐標(biāo)不變)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知斜三棱柱ABC-A1B1C1中,AB=AC,D為BC的中點(diǎn).
(1)求證:A1B∥平面ADC1
(2)若平面ABC⊥平面BCC1B1,求證:AD⊥DC1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)若等差數(shù)列{an}的首項(xiàng)為a1=C
 
11-2m
5m
-A
 
2m-2
11-3m
(m∈N*),公差是(
5
2x
-
2
5
3x2
n展開式中的常數(shù)項(xiàng),其中n為7777-15除以19的余數(shù),求數(shù)列{an}的通項(xiàng)公式.
(2)已知函數(shù)f(x)=C
 
0
n
x2n-1-C
 
1
n
x2n-2+C
 
2
n
x2n-3-…+C
 
r
n
(-1)rx2n-1-r+…+C
 
n
n
(-1)nxn-1,n∈N*,是否存在等差數(shù)列{an},使得a1C
 
0
n
+a2C
 
1
n
+…+an+1C
 
n
n
=nf(2)對(duì)一切n∈N*都成立?若存在,求an的通項(xiàng)公式,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
ax2+(1-a)x-lnx(a>-1);
(I)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若存在x0∈(0,+∞),使f(x0)<0,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

我市某校某數(shù)學(xué)老師這學(xué)期分別用m,n兩種不同的教學(xué)方式試驗(yàn)高一甲、乙兩個(gè)班(人數(shù)均為60人,入學(xué)數(shù)學(xué)平均分和優(yōu)秀率都相同,勤奮程度和自覺性都一樣).現(xiàn)隨機(jī)抽取甲、乙兩班各20名的數(shù)學(xué)期末考試成績(jī),分別為:
甲班:82,73,69,59,67,72,86,58,68,71,67,59,86,66,78,92,58,83,72,81.
乙班:89,69,95,80,73,86,69,90,81,78,98,86,65,82,76,96,88,67,91,85.
(Ⅰ)作出甲乙兩班分別抽取的20名學(xué)生數(shù)學(xué)期末成績(jī)的莖葉圖,依莖葉圖判斷哪個(gè)班的平均分高?
(Ⅱ)現(xiàn)從甲班所抽數(shù)學(xué)成績(jī)不低于80分的同學(xué)中隨機(jī)抽取兩名同學(xué),求成績(jī)?yōu)?6分的同學(xué)至少有一個(gè)被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在[a,b]上的函數(shù),若存在c∈(a,b),使得f(x)在[a,c]上單調(diào)遞增,在[c,b]上單調(diào)遞減,則稱f(x)為[a,b]上單峰函數(shù),c為峰點(diǎn).
(1)已知f(x)=
1
4
(x2-2x)(x2-2x+2t2)為[a,b]上的單峰函數(shù),求t的取值范圍及b-a的最大值;
(2)設(shè)fn(x)=2014+px-(x+
x2
2
+
x3
3
+…+
xn+1
n+1
+
p3xn+4
n+4
),其中n∈N*,p>2.
①證明:對(duì)任意n∈N*,fn(x)為[0,1-
1
p
]上的單峰函數(shù);
②記函數(shù)fn(x)在[0,1-
1
p
]上的峰點(diǎn)為cn,n∈N*,證明:cn<cn+1

查看答案和解析>>

同步練習(xí)冊(cè)答案