【題目】如圖,點(diǎn)E為正方形ABCD邊CD上異于點(diǎn)C、D的動(dòng)點(diǎn),將△ADE沿AE翻折成△SAE,在翻折過程中,下列三個(gè)說法中正確的個(gè)數(shù)是( )
①存在點(diǎn)E和某一翻折位置使得AE∥平面SBC;
②存在點(diǎn)E和某一翻折位置使得SA⊥平面SBC;
③二面角S﹣AB﹣E的平面角總是小于2∠SAE.
A.0B.1C.2D.3
【答案】B
【解析】
對(duì)于①,四邊形ABCE為梯形,所以AE與BC必然相交;對(duì)于②,假設(shè)SA平面SBC,可推得矛盾;對(duì)于③,當(dāng)將△ADE沿AE翻折使得平面SAE⊥平面ABCE時(shí),二面角S﹣AB﹣E最大,在平面SAE內(nèi),作出一個(gè)角等于二面角S﹣AB﹣E的平面角;由角所在三角形的一個(gè)外角,它是不相鄰的兩個(gè)內(nèi)角之和,結(jié)合圖形,即可判定③.
對(duì)于①,四邊形ABCE為梯形,所以AE與BC必然相交,故①錯(cuò)誤;
對(duì)于②,假設(shè)SA平面SBC,SC平面SBC,所以SA⊥SC,又SA⊥SE,SE∩SC=S,所以SA⊥平面SCE,所以平面SCE∥平面SBC,這與平面SBC∩平面SCE=SC矛盾,
故假設(shè)不成立,即②錯(cuò)誤;
對(duì)于③,當(dāng)將△ADE沿AE翻折使得平面SAE⊥平面ABCE時(shí),二面角S﹣AB﹣E最大,如圖,在平面SAE內(nèi),作SO⊥AE,垂足為O,∴SO⊥平面ABCE;AB平面ABCE,
所以SO⊥AB;
作OF⊥AB,垂足為F,連接SF,SO∩OF=O,則AB⊥平面SFO,所以AB⊥SF,則∠SFG即為二面角S﹣AB﹣E的平面角;
在直線AE上取一點(diǎn),使得O=OF,連接S,則∠SO=∠SFO;
由圖形知,在△SA中,S>A,所以∠AS<∠SAE;而∠SO=∠SAE+∠AS,
故∠SO<2∠SAE;
即∠SFO<2∠SAE.故③正確.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若數(shù)列同時(shí)滿足條件:①存在互異的使得(為常數(shù));
②當(dāng)且時(shí),對(duì)任意都有,則稱數(shù)列為雙底數(shù)列.
(1)判斷以下數(shù)列是否為雙底數(shù)列(只需寫出結(jié)論不必證明);
①; ②; ③
(2)設(shè),若數(shù)列是雙底數(shù)列,求實(shí)數(shù)的值以及數(shù)列的前項(xiàng)和;
(3)設(shè),是否存在整數(shù),使得數(shù)列為雙底數(shù)列?若存在,求出所有的的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)2018年的高考考生人數(shù)是2015年高考考生人數(shù)的倍,為了更好地對(duì)比該校考生的升學(xué)情況,統(tǒng)計(jì)了該校2015年和2018年的高考情況,得到如圖柱狀圖:
則下列結(jié)論正確的是
A. 與2015年相比,2018年一本達(dá)線人數(shù)減少
B. 與2015年相比,2018年二本達(dá)線人數(shù)增加了倍
C. 2015年與2018年藝體達(dá)線人數(shù)相同
D. 與2015年相比,2018年不上線的人數(shù)有所增加
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c,且.
(1)求A;
(2)若,求△ABC的面積S的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某生態(tài)農(nóng)莊有一塊如圖所示的空地,其中半圓O的直徑為300米,A為直徑延長線上的點(diǎn),米,B為半圓上任意一點(diǎn),以AB為一邊作等腰直角,其中BC為斜邊.
若;,求四邊形OACB的面積;
現(xiàn)決定對(duì)四邊形OACB區(qū)域地塊進(jìn)行開發(fā),將區(qū)域開發(fā)成垂釣中心,預(yù)計(jì)每平方米獲利10元,將區(qū)域開發(fā)成親子采摘中心,預(yù)計(jì)每平方米獲利20元,則當(dāng)為多大時(shí),垂釣中心和親子采摘中心獲利之和最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形中,,,四邊形為矩形,且平面,.
(1)求證:平面;
(2)點(diǎn)在線段上運(yùn)動(dòng),當(dāng)點(diǎn)在什么位置時(shí),平面與平面所成銳二面角最大,并求此時(shí)二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐S﹣ABCD的底面為矩形,SA⊥底面ABCD,點(diǎn)E在線段BC上,以AD為直徑的圓過點(diǎn) E.若SA=AB=3,則△SED面積的最小值為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com