【題目】已知中心在原點(diǎn)的橢圓和拋物線有相同的焦點(diǎn),橢圓過(guò)點(diǎn),拋物線的頂點(diǎn)為原點(diǎn).

求橢圓和拋物線的方程;

設(shè)點(diǎn)P為拋物線準(zhǔn)線上的任意一點(diǎn),過(guò)點(diǎn)P作拋物線的兩條切線PA,PB,其中A,B為切點(diǎn).

設(shè)直線PA,PB的斜率分別為,,求證:為定值;

若直線AB交橢圓C,D兩點(diǎn),,分別是,的面積,試問(wèn):是否有最小值?若有,求出最小值;若沒(méi)有,請(qǐng)說(shuō)明理由.

【答案】(1).(2)證明見(jiàn)解析;有最小值,最小值

【解析】

由已知列出方程組,解方程組即可求出橢圓和拋物線的方程;設(shè),過(guò)點(diǎn)P與拋物線相切的直線方程為,與拋物線方程聯(lián)立可得,由及其根與系數(shù)的關(guān)系即可證明為定值.由題得當(dāng)直線AB的斜率存在時(shí),可證當(dāng)直線AB的斜率不存在時(shí),可得,由此能求出的最小值.

解:設(shè)橢圓和拋物線的方程分別為,,

中心在原點(diǎn)的橢圓和拋物線有相同的焦點(diǎn),橢圓過(guò)點(diǎn),

拋物線的頂點(diǎn)為原點(diǎn).

,解得,,,

橢圓的方程為,拋物線的方程為

證明:設(shè),過(guò)點(diǎn)P與拋物線相切的直線方程為,

,消去x,

得,,即

設(shè),

,,則,,

直線BA的方程為,即

直線AB過(guò)定點(diǎn)

A為切點(diǎn)的切線方程為,即

同理以B為切點(diǎn)的切線方程為,

兩條切線均過(guò)點(diǎn),

,

則切點(diǎn)弦AB的方程為,即直線AB過(guò)定點(diǎn)

設(shè)P到直線AB的距離為d

當(dāng)直線AB的斜率存在時(shí),設(shè)直線AB的方程為

設(shè),,,,

,得,時(shí)恒成立.

,得,恒成立.

當(dāng)直線AB的斜率不存在時(shí),直線AB的方程為,

此時(shí),,

綜上,有最小值

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了引導(dǎo)居民合理用水,某市決定全面實(shí)施階梯水價(jià).階梯水價(jià)原則上以住宅(一套住宅為一戶)的月用水量為基準(zhǔn)定價(jià),具體劃分標(biāo)準(zhǔn)如表:

階梯級(jí)別

第一階梯水量

第二階梯水量

第三階梯水量

月用水量范圍(單位:立方米)

從本市隨機(jī)抽取了10戶家庭,統(tǒng)計(jì)了同一月份的月用水量,得到如圖莖葉圖:

(Ⅰ)現(xiàn)要在這10戶家庭中任意選取3戶,求取到第二階梯水量的戶數(shù)X的分布列與數(shù)學(xué)期望;

(Ⅱ)用抽到的10戶家庭作為樣本估計(jì)全市的居民用水情況,從全市依次隨機(jī)抽取10戶,若抽到戶月用水量為一階的可能性最大,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)事件A表示“關(guān)于的一元二次方程有實(shí)根”,其中, 為實(shí)常數(shù).

(Ⅰ)若為區(qū)間[0,5]上的整數(shù)值隨機(jī)數(shù), 為區(qū)間[0,2]上的整數(shù)值隨機(jī)數(shù),求事件A發(fā)生的概率;

(Ⅱ)若為區(qū)間[0,5]上的均勻隨機(jī)數(shù), 為區(qū)間[0,2]上的均勻隨機(jī)數(shù),求事件A發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)

1)當(dāng)時(shí),求函數(shù)在點(diǎn)處的切線方程;

2)定義在R上的函數(shù)滿足,當(dāng)時(shí),。若存在滿足不等式是函數(shù)的一個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線 的焦點(diǎn)為圓的圓心.

(1)求拋物線的標(biāo)準(zhǔn)方程;

(2)若斜率的直線過(guò)拋物線的焦點(diǎn)與拋物線相交于兩點(diǎn),求弦長(zhǎng).

【答案】(1);(2)8.

【解析】試題分析:(1)先求圓心得焦點(diǎn),根據(jù)焦點(diǎn)得拋物線方程(2)先根據(jù)點(diǎn)斜式得直線方程,與拋物線聯(lián)立方程組,利用韋達(dá)定理以及弦長(zhǎng)公式得弦長(zhǎng).

試題解析:(1)圓的標(biāo)準(zhǔn)方程為,圓心坐標(biāo)為,

即焦點(diǎn)坐標(biāo)為,得到拋物線的方程:

(2)直線 ,聯(lián)立,得到

弦長(zhǎng)

型】解答
結(jié)束】
19

【題目】已知函數(shù)在點(diǎn)處的切線方程為.

(1)求函數(shù)的解析式;

(2)求函數(shù)的單調(diào)區(qū)間和極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等比數(shù)列中,依次是某等差數(shù)列的第5項(xiàng)、第3項(xiàng)、第2項(xiàng),且,公比

(1)求;

(2)設(shè),求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正項(xiàng)數(shù)列的前項(xiàng)和為,滿足.

(Ⅰ)(i)求數(shù)列的通項(xiàng)公式;

(ii)已知對(duì)于,不等式恒成立,求實(shí)數(shù)的最小值;

(Ⅱ) 數(shù)列的前項(xiàng)和為,滿足,是否存在非零實(shí)數(shù),使得數(shù)列為等比數(shù)列? 并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,.

1)討論的單調(diào)區(qū)間;

2)當(dāng)時(shí),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:已知函數(shù)上的最小值為,若恒成立,則稱函數(shù)上具有性質(zhì).

)判斷函數(shù)上是否具有性質(zhì)?說(shuō)明理由.

)若上具有性質(zhì),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案