【題目】已知數(shù)列滿足,且,點在二次函數(shù)的圖象上.
(1)試判斷數(shù)列是否為算術平方根遞推數(shù)列?若是,請說明你的理由;
(2)記,求證:數(shù)列是等比數(shù)列,并求出通項公式;
(3)在數(shù)列中依據(jù)某種順序從左至右取出其中的項,…,把這些項重新組成一個新數(shù)列,….若數(shù)列是首項為、公比為的無窮等比數(shù)列,且數(shù)列各項的和為,求正整數(shù)的值.
【答案】(1)是,理由見解析;(2)證明見解析,;(3),.
【解析】
(1)數(shù)列是算術平方根遞推數(shù)列,根據(jù)題意,利用點在二次函數(shù)的圖象上,可得,即可證明,從而數(shù)列是算術平方根遞推數(shù)列;
(2)由,,可得,即可證明:數(shù)列是首項為,公比為的等比數(shù)列,從而求出通項公式;
(3)由題意可得數(shù)列的首項為,公比為,可得,再分類討論,可得正整數(shù)的值.
(1)數(shù)列是算術平方根遞推數(shù)列.理由如下:
∵點在函數(shù)的圖象上,則.
即,而,
∴.
所以數(shù)列是算術平方根遞推數(shù)列
(2)由(1)可知,,
∴,
又,
∴數(shù)列是首項為,公比的等比數(shù)列,
故數(shù)列通項公式.
(3)由題意,無窮等比數(shù)列的首項,公比(且為常數(shù)),
則無窮等比數(shù)列的各項和為,化簡得.
因為且為常數(shù),
若,則,與矛盾,
所以,
若或1時,,與矛盾,
所以,即,此時,解得,
故正整數(shù).
科目:高中數(shù)學 來源: 題型:
【題目】有2008名學生參加大型公益活動.若有兩名學生互相認識,則將這兩名學生看作一個合作小組.
(1)求合作小組數(shù)目的最小值,使得無論學生認識的情況如何,都存在三名學生,他們兩兩都在一個合作小組;
(2)若合作小組數(shù)目為,證明:存在四名學生、、、,使得和、和、和、和分別為一個合作小組.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點O為坐標原點,橢圓C:(a>b>0)的左、右焦點分別為F1,F(xiàn)2,離心率為,點I,J分別是橢圓C的右頂點、上頂點,△IOJ的邊IJ上的中線長為.
(1)求橢圓C的標準方程;
(2)過點H(-2,0)的直線交橢圓C于A,B兩點,若AF1⊥BF1,求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】全民健身倡導全民做到每天參加一次以上的體育健身活動,旨在全面提高國民體質和健康水平.某市的體育部門對某小區(qū)的4000人進行了“運動參與度”統(tǒng)計評分(滿分100分),得到了如下的頻率分布直方圖:
(1)求這4000人的“運動參與度”的平均得分(同一組中數(shù)據(jù)用該組區(qū)間中點作代表);
(2)由直方圖可認為這4000人的“運動參與度”的得分服從正態(tài)分布,其中,分別取平均得分和方差,那么選取的4000人中“運動參與度”得分超過84.81分(含84.81分)的人數(shù)估計有多少人?
(3)如果用這4000人得分的情況來估計全市所有人的得分情況,現(xiàn)從全市隨機抽取4人,記“運動參與度”的得分不超過84.81分的人數(shù)為,求.(精確到0.001)
附:①,;②,則,;③.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2018年9~12月某市郵政快遞業(yè)務量完成件數(shù)較2017年9~12月同比增長25%,該市2017年9~12月郵政快遞業(yè)務量柱形圖及2018年9~12月郵政快遞業(yè)務量結構扇形圖如圖所示,根據(jù)統(tǒng)計圖,給出下列結論:
①2018年9~12月,該市郵政快遞業(yè)務量完成件數(shù)約1500萬件;
②2018年9~12月,該市郵政快遞同城業(yè)務量完成件數(shù)與2017年9~12月相比有所減少;
③2018年9~12月,該市郵政快遞國際及港澳臺業(yè)務量同比增長超過75%,其中正確結論的個數(shù)為( )
A. 3
B. 2
C. 1
D. 0
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某班教室桌椅6排7列,有40名同學.空出最后一排的某兩個位置,其余人按身高和視力排座位.班中有24人身高高,有18人視力好,其中,有6名同學同時具備此兩個條件.已知若一名同學個子矮視力又不好,則他必須坐在前三排;若一名同學個子高視力又好,則他必須坐在最后三排.設排座位的方法是,則的質因數(shù)分解中的2的次數(shù)是______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】橢圓的離心率是,過點做斜率為的直線,橢圓與直線交于兩點,當直線垂直于軸時.
(Ⅰ)求橢圓的方程;
(Ⅱ)當變化時,在軸上是否存在點,使得是以為底的等腰三角形,若存在求出的取值范圍,若不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如果不是等差數(shù)列,但若,使得,那么稱為“局部等差”數(shù)列.已知數(shù)列的項數(shù)為4,記事件:集合,事件:為“局部等差”數(shù)列,則條件概率( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個多邊形剪一刀(截痕不過多邊形的頂點)分割為個多邊形,再將其中一個多邊形剪一刀(截痕不過多邊形的頂點)又分割出一個多邊形,……如此下去。如果從一個正方形開始,要剪出一個三角形,一個四邊形,一個五邊形,……一個邊形,那么,所需要剪的最少刀數(shù)為________。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com