15.在等比數(shù)列{an}中,a2=4,a6=8a3
(1)求an;
(2)令bn=log2an,求數(shù)列$\{\frac{1}{{{b_n}•{b_{n+1}}}}\}$的前n項(xiàng)和Tn

分析 (1)設(shè)出公比,利用通項(xiàng)公式建立關(guān)系求出公比和首項(xiàng),可得an;.
(2)因?yàn)閎n=log2an,求公差通項(xiàng)公式bn;利用拆項(xiàng)法求解的前n項(xiàng)和Tn

解答 解:(1){an}為等比數(shù)列,設(shè)數(shù)列{an}的公比q,a2=4,a6=8a3
則$\left\{\begin{array}{l}{a_1}q=4\\{a_1}{q^5}=8{a_1}{q^2}\end{array}\right.$,解得a1=2,q=2
∴${a_n}={2^n}(n∈{N^*})$;
(2)由(1)知,${b_n}={log_2}{2^n}=n$,
數(shù)列$\{\frac{1}{{{b_n}•{b_{n+1}}}}\}$=$\{\frac{1}{n(n+1)}\}$
∴${T_n}=\frac{1}{1×2}+\frac{1}{2×3}+\frac{1}{3×4}+…+\frac{1}{n•(n+1)}=(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})+(\frac{1}{3}-\frac{1}{4})+…+(\frac{1}{n}-\frac{1}{n+1})$
=$1-\frac{1}{n+1}=\frac{n}{n+1}$
故得數(shù)列$\{\frac{1}{{{b_n}•{b_{n+1}}}}\}$的前n項(xiàng)和${T_n}=\frac{n}{n+1}$.

點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式的求法和利用拆項(xiàng)法求解的前n項(xiàng)和,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.下列函數(shù)中,周期為π,且在[$\frac{π}{4},\frac{π}{2}$]上為減函數(shù)的是( 。
A.y=sin(x+$\frac{π}{2}$)B.y=cos(x+$\frac{π}{2}$)C.y=cos(2x+$\frac{π}{2}$)D.y=sin(2x+$\frac{π}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.盒中裝有5個(gè)零件,其中有2個(gè)次品.現(xiàn)從中隨機(jī)抽取2個(gè),則恰有1個(gè)次品的概率為(  )
A.$\frac{7}{10}$B.$\frac{1}{2}$C.$\frac{3}{5}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知$\frac{a+c}=1-\frac{sinC}{sinA+sinB}$,且$b=5,\overrightarrow{CA}•\overrightarrow{CB}=-5$,
(Ⅰ)求△ABC的面積.
(Ⅱ)已知等差數(shù)列{an}的公差不為零,若a1cosA=1,且a2,a4,a8成等比數(shù)列,令${b_n}=\frac{a_n}{2^n}$,數(shù)列{bn}的前n項(xiàng)和為T(mén)n,是否存在實(shí)數(shù)m,使得m+1≤Tn<m+3對(duì)任意正整數(shù)n恒成立;若存在,求m的值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè) a>b,則使$\frac{1}{a}>\frac{1}$成立的一個(gè)充要條件是( 。
A.b<0<aB.0<a<bC.b<a<0D.-1<b<0<a<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.如圖,根據(jù)以上程序,可求得f(-1)+f(2)=(  )
A.-1B.0C.$\frac{17}{2}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在直角坐標(biāo)系xOy中,點(diǎn)P到兩點(diǎn)(0,-$\sqrt{3}$),(0,$\sqrt{3}$)的距離之和等于4,設(shè)點(diǎn)P的軌跡為C.
(1)求曲線C的方程;
(2)過(guò)點(diǎn)(0,$\sqrt{3}$)作直線l與曲線C交于點(diǎn)A、B,以線段AB為直徑的圓能否過(guò)坐標(biāo)原點(diǎn),若能,求出直線l的方程,若不能請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.(1)求中心在原點(diǎn),焦點(diǎn)在x軸上,焦距等于4,且經(jīng)過(guò)點(diǎn)P$(3,-2\sqrt{6})$的橢圓方程;
(2)過(guò)橢圓x2+2y2=2的左焦點(diǎn)引一條傾斜角為45°的直線與橢圓交A、B兩點(diǎn),橢圓的中心為O,求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.函數(shù)y=($\frac{1}{2}$)${\;}^{{x}^{2}-x-1}$的單調(diào)遞減區(qū)間是[$\frac{1}{2}$,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案