【題目】己知函數(shù) (其中e為自然對數(shù)的底數(shù)),

(I)求函數(shù)的單調(diào)區(qū)間;

(II)設(shè),.已知直線是曲線的切線,且函數(shù)上是增函數(shù).

(i)求實(shí)數(shù)的值;

(ii)求實(shí)數(shù)c的取值范圍.

【答案】(I)見解析;(II)(1);(2).

【解析】試題分析:(I)求導(dǎo)得,討論即可;

(II) (i)由相切得,解方程即可;(ii)先構(gòu)造來討論的大小,得,求導(dǎo),得. 由函數(shù)上是增函數(shù),且曲線上連續(xù)不斷知: , 上恒成立,分兩段討論即可.

試題解析:

,

①當(dāng)時,

時, ,在時, ,

上是減函數(shù),在上是增函數(shù);

②當(dāng)時,

時, ,在時, ,

上是增函數(shù),在上是減函數(shù);

(Ⅱ)(1)對求導(dǎo),得,

設(shè)直線與曲線切于點(diǎn),則

解得;

(2)記函數(shù) ,

求導(dǎo),得,

當(dāng)時, 恒成立,

當(dāng)時, ,

,

上恒成立,故上單調(diào)遞減.

, ,

曲線在[1,2]上連續(xù)不間斷,

∴由函數(shù)的零點(diǎn)存在性定理及其單調(diào)性知,唯一的(1,2),使

∴當(dāng)時, >0,當(dāng)時, <0.

∴當(dāng)時, =

求導(dǎo),得

由函數(shù)上是增函數(shù),且曲線上連續(xù)不斷知:

, 上恒成立

①當(dāng)時, ≥0在上恒成立

上恒成立,

, ,則,

當(dāng) 變化時, , 變化情況列表如下:

3

0

極小值

min= 極小值=

故“上恒成立”,只需 ,即

②當(dāng)時,

當(dāng)時, 上恒成立

綜合①②知,當(dāng)時,函數(shù)上是增函數(shù).

故實(shí)數(shù)的取值范圍是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知經(jīng)銷某種商品的電商在任何一個銷售季度內(nèi),每售出噸該商品可獲利潤萬元,未售出的商品,每噸虧損萬元.根據(jù)往年的銷售經(jīng)驗(yàn),得到一個銷售季度內(nèi)市場需求量的頻率分布直方圖如右圖所示.已知電商為下一個銷售季度籌備了噸該商品.現(xiàn)以(單位:噸, )表示下一個銷售季度的市場需求量, (單位:萬元)表示該電商下一個銷售季度內(nèi)經(jīng)銷該商品獲得的利潤.

(Ⅰ)根據(jù)頻率分布直方圖,估計(jì)一個銷售季度內(nèi)市場需求量的平均數(shù)與中位數(shù)的大小;

(Ⅱ)根據(jù)直方圖估計(jì)利潤不少于57萬元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在三棱錐P ABC中,PA⊥底面ABCBCA90°APAC,點(diǎn)D,E分別在棱PB,PC上,且BC∥平面ADE.

Ⅰ)求證:DE⊥平面PAC;

PCAD,且三棱錐PABC的體積為8,求多面體ABCED的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知函數(shù),

(I)求函數(shù)的單調(diào)區(qū)間;

(II)設(shè),已知函數(shù)上是增函數(shù).

(1)研究函數(shù)上零點(diǎn)的個數(shù);

(ii)求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y= 的定義域?yàn)椋?/span>
A.{x|x≥1}
B.{x|x≥1或x=0}
C.{x|x≥0}
D.{x|x=0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=a (a>0且a≠1),若f(lga)= ,則a=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知tanα, 是關(guān)于x的方程x2﹣kx+k2﹣3=0的兩實(shí)根,且3π<α< π,求cos(3π+α)﹣sin(π+α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分) 某中學(xué)的環(huán)保社團(tuán)參照國家環(huán)境標(biāo)準(zhǔn)制定了該校所在區(qū)域空氣質(zhì)量指數(shù)與空氣質(zhì)量等級對應(yīng)關(guān)系如下表(假設(shè)該區(qū)域空氣質(zhì)量指數(shù)不會超過):

空氣質(zhì)量指數(shù)

空氣質(zhì)量等級

級優(yōu)

級良

級輕度污染

級中度污染

級重度污染

級嚴(yán)重污染

該社團(tuán)將該校區(qū)在天的空氣質(zhì)量指數(shù)監(jiān)測數(shù)據(jù)作為樣本,繪制的頻率分布直方圖如下圖,把該直方圖所得頻率估計(jì)為概率

請估算年(以天計(jì)算)全年空氣質(zhì)量優(yōu)良的天數(shù)(未滿一天按一天計(jì)算);

)該校日將作為高考考場,若這兩天中某天出現(xiàn)級重度污染,需要凈化空氣費(fèi)用元,出現(xiàn)級嚴(yán)重污染,需要凈化空氣費(fèi)用元,記這兩天凈化空氣總費(fèi)用為元,求的分布列及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某幾何體的三視圖中,俯視圖是邊長為2的正三角形,正視圖和左視圖分別為直角梯形和直角三角形,則該幾何體的體積為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案