【題目】如圖,四棱錐P-ABCD中,側(cè)面PAD為等邊三角形且垂直于底面ABCD, EPD的中點(diǎn).

1)證明:直線 平面PAB;

2)點(diǎn)M在棱PC 上,且直線BM與底面ABCD所成角為 ,求二面角M-AB-D的余弦值.

【答案】1)證明見解析;(2

【解析】

1)取PA的中點(diǎn)F,連接EF,BF,通過證明CEBF,利用直線與平面平行的判定定理證明即可;
2)利用已知條件轉(zhuǎn)化求解M到底面的距離,作出二面角的平面角,然后求解二面角MABD的余弦值即可.

1)證明:取PA的中點(diǎn)F,連接EF,BF,

因?yàn)?/span>EPD的中點(diǎn),
所以,BADABC90°

,
BCEF是平行四邊形,可得CEBF,BF平面PAB,平面PAB,
直線CE平面PAB
2)解:四棱錐PABCD中,
側(cè)面PAD為等邊三角形且垂直于底面ABCD,ABBCAD,
BADABC90°,EPD的中點(diǎn).
AD的中點(diǎn)OM在底面ABCD上的射影NOC上,

設(shè)AD2,則ABBC1,OP
∴∠PCO60°,直線BM與底面ABCD所成角為45°,
可得:BNMN,BC1,
可得:,
NQABQ,連接MQ,ABMN
所以MQN就是二面角MABD的平面角,MQ,
二面角MABD的余弦值為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

(Ⅰ)當(dāng)a=1時(shí),求函數(shù)的單調(diào)區(qū)間:

(Ⅱ)求函數(shù)的極值;

(Ⅲ)若函數(shù)有兩個(gè)不同的零點(diǎn),求a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】20194月,北京世界園藝博覽會(huì)開幕,為了保障園藝博覽會(huì)安全順利地進(jìn)行,某部門將5個(gè)安保小組全部安排到指定的三個(gè)不同區(qū)域內(nèi)值勤,則每個(gè)區(qū)域至少有一個(gè)安保小組的排法有(

A.150B.240C.300D.360

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前n項(xiàng)和是等差數(shù)列,且.

)求數(shù)列的通項(xiàng)公式;

)令.求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,,,,,分別是,的中點(diǎn),上且.

(I)求證:;

(II)求直線與平面所成角的正弦值;

(III)在線段上是否存在點(diǎn),使二面角的大小為?若存在,求出的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知?jiǎng)訄A與圓 相切,且與圓 相內(nèi)切,記圓心的軌跡為曲線.設(shè)為曲線上的一個(gè)不在軸上的動(dòng)點(diǎn), 為坐標(biāo)原點(diǎn),過點(diǎn)的平行線交曲線, 兩個(gè)不同的點(diǎn).

(Ⅰ)求曲線的方程;

(Ⅱ)試探究的比值能否為一個(gè)常數(shù)?若能,求出這個(gè)常數(shù),若不能,請說明理由;

(Ⅲ)記的面積為, 的面積為,令,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】英語老師要求學(xué)生從星期一到星期四每天學(xué)習(xí)3個(gè)英語單詞:每周五對一周內(nèi)所學(xué)單詞隨機(jī)抽取若干個(gè)進(jìn)行檢測(一周所學(xué)的單詞每個(gè)被抽到的可能性相同)

(1)英語老師隨機(jī)抽了個(gè)單詞進(jìn)行檢測,求至少有個(gè)是后兩天學(xué)習(xí)過的單詞的概率;

(2)某學(xué)生對后兩天所學(xué)過的單詞每個(gè)能默寫對的概率為,對前兩天所學(xué)過的單詞每個(gè)能默寫對的概率為,若老師從后三天所學(xué)單詞中各抽取一個(gè)進(jìn)行檢測,求該學(xué)生能默寫對的單詞的個(gè)數(shù)的分布列和期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于頂點(diǎn)在原點(diǎn)的拋物線,給出下列條件:

①焦點(diǎn)在y軸上;

②焦點(diǎn)在x軸上

③拋物線上橫坐標(biāo)為1的點(diǎn)到焦點(diǎn)的距離等于6;

④拋物線的過焦點(diǎn)且垂直于對稱軸的弦的長為5;

⑤由原點(diǎn)向過焦點(diǎn)的某條直線作垂線,垂足坐標(biāo)為(2,1

能使拋物線方程為y210x的條件是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過點(diǎn)的直線被圓所截的弦長為.

1)求圓心到直線的距離;

2)求直線的方程.

查看答案和解析>>

同步練習(xí)冊答案