分析 (1)由條件知−53與13是方程|ax-2|=3的兩個(gè)根,即:|−53a−2|=3且|13a−2|=3,由此求a的值;
(2)由絕對(duì)值不等式性質(zhì):f(x)+f(-x)≥|(ax-2)-(ax+2)|=4,即可求實(shí)數(shù)a的取值范圍.
解答 解:(1)由條件知−53與13是方程|ax-2|=3的兩個(gè)根,
即:|−53a−2|=3且|13a−2|=3----------------(3分)
解得a=-3--------------(5分)
(2)設(shè)g(x)=f(x)+f(-x)=|ax-2|+|ax+2|,
由絕對(duì)值不等式性質(zhì):g(x)=f(x)+f(-x)≥|(ax-2)-(ax+2)|=4,即:g(x)min=4,
若f(x)+f(-x)≥a對(duì)于任意x∈R恒成立,只需:a≤4--------(10分)
點(diǎn)評(píng) 本題考查絕對(duì)值不等式,考查絕對(duì)值不等式的性質(zhì),考查學(xué)生分析解決問題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | √32 | B. | √3 | C. | 72 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | 8√7 | C. | 8√14 | D. | 16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|1<x<2} | B. | {x|x>1或x≤2} | C. | {x|1<x≤2} | D. | ∅ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a | B. | b | C. | c | D. | d |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com