如圖13,四棱錐PABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點(diǎn).
(1)證明:PB∥平面AEC;
(2)設(shè)二面角DAEC為60°,AP=1,AD=,求三棱錐EACD的體積.
圖13
解:(1)證明:連接BD交AC于點(diǎn)O,連接EO.
因?yàn)?i>ABCD為矩形,所以O為BD的中點(diǎn).
又E為PD的中點(diǎn),所以EO∥PB.
因?yàn)?i>EO⊂平面AEC,PB⊄平面AEC,
所以PB∥平面AEC.
(2)因?yàn)?i>PA⊥平面ABCD,ABCD為矩形,
所以AB,AD,AP兩兩垂直.
如圖,以A為坐標(biāo)原點(diǎn),,AD,AP的方向?yàn)?i>x軸、y軸、z軸的正方向,||為單位長(zhǎng),建立空間直角坐標(biāo)系Axyz,則D,E,=.
設(shè)B(m,0,0)(m>0),則C(m,,0),=(m,,0).
設(shè)n1=(x,y,z)為平面ACE的法向量,
則即
可取n1=.
又n2=(1,0,0)為平面DAE的法向量,
由題設(shè)易知|cos〈n1,n2〉|=,即
=,解得m=.
因?yàn)?i>E為PD的中點(diǎn),所以三棱錐EACD的高為.三棱錐EACD的體積V=××××=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)集合A={1,2},B={1,2,3},分別從集合A和B中隨機(jī)取一個(gè)數(shù)a和b,確定平面上的一個(gè)點(diǎn)P(a,b),記“點(diǎn)P(a,b)落在直線x+y=n上”為事件Cn(2≤n≤5,n∈N),若事件Cn的概率最大,則n的所有可能值為( )
A.3 B.4
C.2和5 D.3和4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
.如圖,將一個(gè)各面都涂了油漆的正方體,切割為125個(gè)同樣大小的小正方體.經(jīng)過(guò)攪拌后,從中隨機(jī)取一個(gè)小正方體,記它的涂漆面數(shù)為X,則X的均值E(X)=( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
幾何體的三視圖(單位:cm)如圖11所示,則此幾何體的表面積是( )
圖11
A.90 cm2 B.129 cm2 C.132 cm2 D.138 cm2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
在平面四邊形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD.將△ABD沿BD折起,使得平面ABD⊥平面BCD,如圖15所示.
(1)求證:AB⊥CD;
(2)若M為AD中點(diǎn),求直線AD與平面MBC所成角的正弦值.
圖15
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖16,四棱錐P ABCD中,ABCD為矩形,平面PAD⊥平面ABCD.
圖16
(1)求證:AB⊥PD.
(2)若∠BPC=90°,PB=,PC=2,問(wèn)AB為何值時(shí),四棱錐P ABCD的體積最大?并求此時(shí)平面BPC與平面DPC夾角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖11所示,三棱柱ABC A1B1C1中,點(diǎn)A1在平面ABC內(nèi)的射影D在AC上,∠ACB=90°,BC=1,AC=CC1=2.
(1)證明:AC1⊥A1B;
(2)設(shè)直線AA1與平面BCC1B1的距離為,求二面角A1 AB C的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知二面角αlβ為60°,AB⊂α,AB⊥l,A為垂足,CD⊂β,C∈l,∠ACD=135°,則異面直線AB與CD所成角的余弦值為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
現(xiàn)有編號(hào)分別為1,2,3,4,5的五道不同的政治題和編號(hào)分別為6,7,8,9的四道不同的歷史題.甲同學(xué)從這九道題中一次性隨機(jī)抽取兩道題,每道題被抽到的概率是相等的,用符號(hào)(x,y)表示事件“抽到的兩道題的編號(hào)分別為x、y,且x<y”.
(1)問(wèn)有多少個(gè)基本事件,并列舉出來(lái);
(2)求甲同學(xué)所抽取的兩道題的編號(hào)之和小于17但不小于11的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com