【題目】在平面直角坐標(biāo)系中,拋物線的頂點(diǎn)在原點(diǎn),且該拋物線經(jīng)過(guò)點(diǎn),其焦點(diǎn)軸上.

(Ⅰ)求過(guò)點(diǎn)且與直線垂直的直線的方程;

(Ⅱ)設(shè)過(guò)點(diǎn)的直線交拋物線兩點(diǎn),,求的最小值.

【答案】(Ⅰ).(Ⅱ)12.

【解析】試題分析:(I)設(shè)拋物線方程為,由點(diǎn)上,得,從而得點(diǎn)的坐標(biāo)為,又直線的斜率為1,從而其垂線的斜率為-1,根據(jù)點(diǎn)斜式可得結(jié)果;(II)直線的方程是,.代入,有,利用求根公式求得 ,化簡(jiǎn)得根據(jù)兩點(diǎn)間距離公式,可化為,利用基本不等式求解即可.

試題解析:(Ⅰ)設(shè)拋物線方程為,由點(diǎn)上,得.從而點(diǎn)的坐標(biāo)為.又直線的斜率為1,從而其垂線的斜率為-1,因此所求直線方程為.

(Ⅱ)設(shè)點(diǎn)的坐標(biāo)為,直線的方程是,.

代入,有,解得.

,化簡(jiǎn)得.

因此 .

所以 ,當(dāng)且僅當(dāng)時(shí)取等號(hào),即的最小值為12.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,且過(guò)點(diǎn).

(1)求橢圓的方程;

(2)若直線與橢圓交于兩點(diǎn)(點(diǎn)均在第一象限),且直線的斜率成等比數(shù)列,證明:直線的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2),當(dāng)時(shí),函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形,,,平面底面,的中點(diǎn),的中點(diǎn),,,.

(Ⅰ)求證:

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線經(jīng)過(guò)點(diǎn),過(guò)作直線與拋物線相切.

(1)求直線的方程;

(2)如圖,直線,與拋物線交于,兩點(diǎn),與直線交于點(diǎn),是否存在常數(shù),使

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是定義在R上的奇函數(shù).

1)求實(shí)數(shù)a的值;

2)用定義證明函數(shù)R上為單調(diào)遞增函數(shù).若當(dāng)時(shí)恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某紀(jì)念章從2018年10月1日起開(kāi)始上市,通過(guò)市場(chǎng)調(diào)查,得到該紀(jì)念章每1枚的市場(chǎng)價(jià)(單位:元)與上市時(shí)間(單位:天)的數(shù)據(jù)如下:

上市時(shí)間

4

10

36

市場(chǎng)價(jià)

90

51

90

(1)根據(jù)上表數(shù)據(jù),從下列函數(shù)中選取一個(gè)恰當(dāng)?shù)暮瘮?shù)描述該紀(jì)念章的市場(chǎng)價(jià)與上市時(shí)間的變化關(guān)系并說(shuō)明理由:①;②;③

(2)利用你選取的函數(shù),求該紀(jì)念章市場(chǎng)價(jià)最低時(shí)的上市天數(shù)及最低的價(jià)格.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若關(guān)于的方程在區(qū)間上有解,求實(shí)數(shù)的取值范圍;

(2)若對(duì)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017年11月、12月全國(guó)大范圍流感爆發(fā),為研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,一興趣小組抄錄了某醫(yī)院11月到12月間的連續(xù)6個(gè)星期的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:

日期

第一周

第二周

第三周

第四周

第五周

第六周

晝夜溫差x(°C)

10

11

13

12

8

6

就診人數(shù)y(個(gè))

22

25

29

26

16

12

該興趣小組確定的研究方案是先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn)。

(Ⅰ)求選取的2組數(shù)據(jù)恰好是相鄰兩個(gè)星期的概率;

(Ⅱ)若選取的是第一周與第六周的兩組數(shù)據(jù),請(qǐng)根據(jù)第二周到第五周的4組數(shù)據(jù),求出關(guān)于的線性回歸方程;

(Ⅲ)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2人,則認(rèn)為得到的線性回歸方程是理想的,試問(wèn)該小組所得線性回歸方程是否理想?

(參考公式: )

參考數(shù)據(jù): 1092, 498

查看答案和解析>>

同步練習(xí)冊(cè)答案