已知圓C:x2+y2-2x+4y-4=0.問(wèn)在圓C上是否存在兩點(diǎn)A、B關(guān)于直線y=kx-1對(duì)稱,且以AB為直徑的圓經(jīng)過(guò)原點(diǎn)?若存在,寫(xiě)出直線AB的方程;若不存在,說(shuō)明理由.
圓C的方程可化為(x-1)2+(y+2)2=9,圓心為C(1,-2).
假設(shè)在圓C上存在兩點(diǎn)A,B滿足條件,
則圓心C(1,-2)在直線y=kx-1上,即k=-1. (2分)
于是可知,kAB=1.
設(shè)lAB:y=x+b,代入圓C的方程,
整理得2x2+2(b+1)x+b2+4b-4=0,
則Δ=4(b+1)2-8(b2+4b-4)>0,即b2+6b-9<0.
解得-3-3<b<-3+3. (6分)
設(shè)點(diǎn)A,B的坐標(biāo)分別為A(x1,y1),B(x2,y2),
則x1+x2=-b-1,x1x2=b2+2b-2.
也就是x1x2+(x1+b)(x2+b)=0.
由題意知OA⊥OB,則有x1x2+y1y2=0, (8分)
∴2x1x2+b(x1+x2)+b2=0.
∴b2+4b-4-b2-b+b2=0,化簡(jiǎn)得b2+3b-4=0. (10分)
解得b=-4或b=1,均滿足Δ>0, (11分)
即直線AB的方程為x-y-4=0,或x-y+1=0 . (12分)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知P是直線l:3x-4y+11=0上的動(dòng)點(diǎn),PA,PB是圓x2+y2-2x-2y+1=0的兩條切線,C是圓心,那么四邊形PACB面積的最小值是 ( ).
A. B.2 C. D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知拋物線y2=2px(p>0)上一點(diǎn)M(1,m)(m>0)到其焦點(diǎn)F的距離為5,則以M為圓心且與y軸相切的圓的方程為( ).
A.(x-1)2+(y-4)2=1
B.(x-1)2+(y+4)2=1
C.(x-1)2+(y-4)2=16
D.(x-1)2+(y+4)2=16
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知兩圓x2+y2-2x-6y-1=0和x2+y2-10x-12y+m=0.
(1)m取何值時(shí)兩圓外切?
(2)m取何值時(shí)兩圓內(nèi)切?
(3)求m=45時(shí)兩圓的公共弦所在直線的方程和公共弦的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
若圓x2+y2+2x-4y+m=0(m<3)的一條弦AB的中點(diǎn)為P(0,1),則垂直于AB的直徑所在直線的方程為( ).
A.x-y+1=0 B.x+y-1=0
C.x-y-1=0 D.x+y+1=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知點(diǎn)P(x0,y0),圓O:x2+y2=r2(r>0),直線l:x0x+y0y=r2,有以下幾個(gè)結(jié)論:①若點(diǎn)P在圓O上,則直線l與圓O相切;②若點(diǎn)P在圓O外,則直線l與圓O相離;③若點(diǎn)P在圓O內(nèi),則直線l與圓O相交;④無(wú)論點(diǎn)P在何處,直線l與圓O恒相切,其中正確的個(gè)數(shù)是( ).
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
一個(gè)橢圓中心在原點(diǎn),焦點(diǎn)F1,F2在x軸上,P(2,)是橢圓上一點(diǎn),且|PF1|,|F1F2|,|PF2|成等差數(shù)列,則橢圓方程為( ).
A.+=1 B.+=1 C.+=1 D.+=1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com