【題目】已知橢圓的離心率,過點(diǎn)的直線與原點(diǎn)的距離為

1求橢圓的方程;

2設(shè)分別為橢圓的左、右焦點(diǎn),過作直線交橢圓于兩點(diǎn),求面積的最大值.

【答案】12.

【解析】

試題分析:1先求出直線方程為,利用原點(diǎn)到直線的距離建立方程并化簡得,有離心率,解方程組求得,故橢圓方程為;2設(shè)直線的方程為:,聯(lián)立直線與橢圓方程,寫出根與系數(shù)關(guān)系,利用弦長公式求得面積的表達(dá)式,利用基本不等式求得最大值為.

試題解析:

1直線的方程為,

原點(diǎn)到直線的距離為.............

...........

..........

①②③可得:故橢圓方程為;

2,設(shè),

由于直線的斜率不為0,故設(shè)其方程為:,

聯(lián)立直線與橢圓方程:

..........

................

代入得:,

,則,

當(dāng)且僅當(dāng),即,即時(shí),面積取最大值

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓錐頂點(diǎn)為,底面圓心為,其母線與底面所成的角為45°是底面圓上的兩條平行的弦,.

(1)證明:平面與平面的交線平行于底面;

(2)求軸與平面所成的角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若直線l經(jīng)過第二、三、四象限,則直線l的傾斜角的范圍是 (  )

A. 0°≤α<90° B. 90°≤α<180°

C. 90°<α<180° D. 0°≤α<180°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左右頂點(diǎn)為、,左右焦點(diǎn)為,其長半軸的長等于焦距,點(diǎn)是橢圓上的動(dòng)點(diǎn),面積的最大值為

1求橢圓的方程;

2設(shè)為直線上不同于點(diǎn)的任意一點(diǎn),若直線、分別與橢圓交于異于、的點(diǎn)、,判斷點(diǎn)與以為直徑的圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過棱柱不相鄰兩條側(cè)棱的截面是 (  )

A. 矩形 B. 正方形

C. 梯形 D. 平行四邊形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在其定義域內(nèi)有兩個(gè)不同的極值點(diǎn).

(1)求的取值范圍;

(2)設(shè)兩個(gè)極值點(diǎn)分別為,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】育才高中為了推進(jìn)新課程改革,滿足不同層次學(xué)生的需求,決定在每周的周一、周三、周五的課外活動(dòng)期間同時(shí)開設(shè)“茶藝”、“模擬駕駛”、“機(jī)器人制作”、“數(shù)學(xué)與生活”和“生物與環(huán)境”選修課,每位有興趣的同學(xué)可以在任何一天參加任何一門科目.(規(guī)定:各科達(dá)到預(yù)先設(shè)定的人數(shù)時(shí)稱為滿座,否則稱為不滿座統(tǒng)計(jì)數(shù)據(jù)表明,各選修課各天的滿座的概率如下表:

生物與環(huán)境

數(shù)學(xué)與生活

機(jī)器人制作

模擬駕駛

茶藝

周一

周三

周五

1求茶藝選修課在周一、周三、周五都不滿座的概率;

2設(shè)周三各選修課中滿座的科目數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),函數(shù)處的切線與直線垂直.

(Ⅰ)求實(shí)數(shù)的值;

(Ⅱ)若函數(shù)存在單調(diào)遞減區(qū)間,求實(shí)數(shù)的取值范圍;

(Ⅲ)設(shè)是函數(shù)的兩個(gè)極值點(diǎn),若,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在(1,1)上的奇函數(shù)fx),在x1,0)時(shí),fx=2x+2x

(1)求fx)在(1,1)上的表達(dá)式;

(2)用定義證明fx)在(10)上是減函數(shù);

3)若對于x01)上的每一個(gè)值,不等式m2xfx)<4x1恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案