16.設m∈R,若函數(shù)f(x)=(m+1)x${\;}^{\frac{2}{3}}$+mx+1是偶函數(shù),則f(x)的單調遞增區(qū)間是[0,+∞).

分析 由題意函數(shù)f(x)=(m+1)x${\;}^{\frac{2}{3}}$+mx+1是偶函數(shù),則mx=0,可得m=0,可得f(x)=x${\;}^{\frac{2}{3}}$+1,可求單調遞增區(qū)間.

解答 解:由題意:函數(shù)f(x)=(m+1)x${\;}^{\frac{2}{3}}$+mx+1是偶函數(shù),
則mx=0,故得m=0,
那么:f(x)=x${\;}^{\frac{2}{3}}$+1,
根據(jù)冪函數(shù)的性質可知:
函數(shù)f(x)的單點增區(qū)間為[0,+∞).
故答案為:[0,+∞).

點評 本題考查了冪函數(shù)的圖象及性質的運用.屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

6.不用計算器化簡計算:
(1)${2^0}+{3^{-1}}+{(\frac{8}{27})^{\frac{1}{3}}}$;
(2)${(\frac{27}{8})^{-\frac{2}{3}}}-{(\frac{49}{9})^{0.5}}+{(0.008)^{-\frac{2}{3}}}×\frac{2}{25}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.若銳角α滿足cos(α+$\frac{π}{4}$)=$\frac{3}{5}$,則sin2α=( 。
A.$\frac{7}{25}$B.$\frac{16}{25}$C.$\frac{18}{25}$D.$\frac{24}{25}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)$f(x)=lg\frac{ax-1}{x-1}({a>0})$.
(1)求函數(shù)f(x)的定義域;
(2)若函數(shù)f(x)在區(qū)間[10,+∞)上是增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.若集合A={x|y2=x,y∈R},B={y|y=sinx,x∈R},A∩B={x|0≤x≤1}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知橢圓Г:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右兩個焦點分別為F1、F2,P是橢圓上位于第一象限內的點,PQ⊥x軸,垂足為Q,且|F1F2|=6,∠PF1F2=arccos$\frac{5\sqrt{3}}{9}$,△PF1F2的面積為3$\sqrt{2}$.
(1)求橢圓Г的方程;
(2)若M是橢圓上的動點,求|MQ|的最大值.并求出|MQ|取得最大值時M的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.對于各數(shù)互不相等的正整數(shù)數(shù)組(i1,i2,i3,…,in)(n是不小于3的正整數(shù)),若對任意的p,q∈{1,2,3,…,n},當p<q時,有ip>iq,則稱ip,iq是該數(shù)組的一個“逆序”,一個數(shù)組中所有“逆序”的個數(shù)稱為該數(shù)組的“逆序”數(shù),如數(shù)組(2,3,1)的逆序數(shù)等于2.
(1)則數(shù)組(4,2,3,1)的逆序數(shù)等于5.
(2)若數(shù)組(i1,i2,i3,…,in)的逆序數(shù)為n,則數(shù)組(in,in-1,…,i1)的逆序數(shù)為$\frac{{n}^{2}-3n}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.一個幾何體的三視圖如圖所示,其中正視圖是邊長為2的等邊三角形,俯視圖為正六邊形,則該幾何體的側視圖的面積是( 。
A.2B.1C.$\frac{1}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.如圖所示,在四面體中,若直線EF和GH相交,則它們的交點一定( 。
A.在直線DB上B.在直線AB上C.在直線CB上D.都不對

查看答案和解析>>

同步練習冊答案