【題目】如圖,直線y=ax+2與曲線y=f(x)交于A、B兩點,其中A是切點,記h(x)= ,g(x)=f(x)﹣ax,則下列判斷正確的是( )

A.h(x)只有一個極值點
B.h(x)有兩個極值點,且極小值點小于極大值點
C.g(x)的極小值點小于極大值點,且極小值為﹣2
D.g(x)的極小值點大于極大值點,且極大值為2

【答案】D
【解析】解:∵直線y=ax+2與曲線y=f(x)交于A、B兩點,

∴ax+2=f(x)有兩個解,

設f(x)的極大值點為m,

∴f′(m)=a,x<m,f′(x)>a,x>m,f′(x)<a.

g(x)=f(x)﹣ax,g′(x)=f′(x)﹣a,

∴g′(m)=f′(m)﹣m,

∴g′(m)=0,x>m,g′(x)<0,x<m,g′(x)>0,

∴x=m是函數(shù)的極大值點,且g(m)=f(m)﹣am=2,

同理g(x)有極小值,

所以答案是:D.

【考點精析】利用函數(shù)的極值與導數(shù)對題目進行判斷即可得到答案,需要熟知求函數(shù)的極值的方法是:(1)如果在附近的左側,右側,那么是極大值(2)如果在附近的左側,右側,那么是極小值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,圓錐SO的底面圓半徑|OA|=1,其側面展開圖是一個圓心角為 的扇形.

(1)求此圓錐的表面積;
(2)求此圓錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(x+θ)﹣cos cos( )(其中A為常數(shù),θ∈(﹣π,0),若實數(shù)x1 , x2 , x3滿足;①x1<x2<x3 , ②x3﹣x1<2π,③f(x1)=f(x2)=f(x3),則θ的值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設n≥3,n∈N* , 在集合{1,2,…,n}的所有元素個數(shù)為2的子集中,把每個子集的較大元素相加,和記為a,較小元素之和記為b.
(1)當n=3時,求a,b的值;
(2)求證:對任意的n≥3,n∈N* 為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在數(shù)列{an}中, , , ,其中n∈N*
(1)求證:數(shù)列{bn}為等差數(shù)列;
(2)設cn=bnbn+1cosnπ,n∈N* , 數(shù)列{cn}的前n項和為Tn , 若當n∈N*且n為偶數(shù)時, 恒成立,求實數(shù)t的取值范圍;
(3)設數(shù)列{an}的前n項的和為Sn , 試求數(shù)列{S2n﹣Sn}的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設f(x)=ex(ex﹣ax﹣1)且f(x)≥0恒成立.
(1)求實數(shù)a的值;
(2)證明:f(x)存在唯一的極大值點x0 , 且

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】8把椅子擺成一排,4人隨機就座,任何兩人不相鄰的坐法種數(shù)為(
A.144
B.120
C.72
D.24

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地區(qū)擬建立一個藝術搏物館,采取競標的方式從多家建筑公司選取一家建筑公司,經(jīng)過層層篩選,甲、乙兩家建筑公司進入最后的招標.現(xiàn)從建筑設計院聘請專家設計了一個招標方案:兩家公司從6個招標總是中隨機抽取3個總題,已知這6個招標問題中,甲公司可正確回答其中4道題目,而乙公司能正面回答每道題目的概率均為 ,甲、乙兩家公司對每題的回答都是相獨立,互不影響的.
(1)求甲、乙兩家公司共答對2道題目的概率;
(2)請從期望和方差的角度分析,甲、乙兩家哪家公司競標成功的可能性更大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=sin(2x+φ),其中φ為實數(shù),若f(x)≤|f( )|對(0,+∞)恒成立,且 ,則f(x)的單調遞增區(qū)間是

查看答案和解析>>

同步練習冊答案