【題目】已知函數(shù)f(x)=x2﹣(a+1)x+1(a∈R)
(1)若關于x的不等式f(x)>0的解集為R,求實數(shù)a的取值范圍;
(2)若關于x的不等式f(x)≤0的解集為P,集合Q={x|0≤x≤1},若P∩Q=,求實數(shù)a的取值范圍.

【答案】
(1)解:∵f(x)=x2﹣(a+1)x+1(a∈R),

且關于x的不等式f(x)≥0的解集為R,

∴△=(a+1)2﹣4≤0,

解得﹣3≤a≤1,

∴實數(shù)a的取值范圍是﹣3≤a≤1


(2)解:∵關于x的不等式f(x)≤0的解集是P,

集合Q={x|0≤x≤1},當 P∩Q=時,

即不等式f(x)>0對x∈Q恒成立;

∴x∈[0,1]時,x2﹣(a+1)x+1>0恒成立,

∴a+1<x+ 對于x∈(0,1]時恒成立;

∴a+1<2,

即a<1,

∴實數(shù)a的取值范圍是a<1


【解析】(1)應用一元二次不等式恒成立時判別式△≤0,求出a的取值范圍;(2)問題轉化為不等式f(x)>0對x∈Q恒成立,由此求出a的取值范圍.
【考點精析】關于本題考查的二次函數(shù)的性質,需要了解當時,拋物線開口向上,函數(shù)在上遞減,在上遞增;當時,拋物線開口向下,函數(shù)在上遞增,在上遞減才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知正△ABC三個頂點都在半徑為2的球面上,球心O到平面ABC的距離為1,點E是線段AB的中點,過點E作球O的截面,則截面面積的最小值是( 。

A.
B.2π
C.
D.3π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,側棱PD⊥底面ABCD,PD=DC=2,E是PC的中點,作EF⊥PB交PB于點F.
(1)證明:PA∥平面EDB;
(2)證明:PB⊥平面EFD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,一個的矩形),被截取一角(即), ,平面平面 .

(1)證明:

(2)求二面角的大小的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三棱柱ABC﹣A′B′C′,側棱與底面垂直,且所有的棱長均為2,E為AA′的中點,F(xiàn)為AB的中點. (Ⅰ)求多面體ABCB′C′E的體積;
(Ⅱ)求異面直線C'E與CF所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】平面α過正方體ABCD﹣A1B1C1D1的頂點A,α∥平面CB1D1 , α∩平面ABCD=m,α∩平面AB B1A1=n,則m,n所成角的正弦值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,曲線的普通方程為,曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點, 軸正半軸為極軸建立極坐標系.

(1)求曲線的極坐標方程;

(2)求曲線焦點的極坐標,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在等腰梯形ABCD中,AB∥CD,且AB=2AD,設∠DAB=θ,θ∈(0, ),以A,B為焦點且過點D的雙曲線的離心率為e1 , 以C,D為焦點且過點A的橢圓的離心率為e2 , 則(
A.隨著角度θ的增大,e1增大,e1e2為定值
B.隨著角度θ的增大,e1減小,e1e2為定值
C.隨著角度θ的增大,e1增大,e1e2也增大
D.隨著角度θ的增大,e1減小,e1e2也減小

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù)f(x)定義域內(nèi)的任意x1 , x2(x1≠x2),有以下結論:
①f(0)=1;
②f(1)=0
③f(x1+x2)=f(x1)f(x2
④f(x1x2)=f(x1)+f(x2
⑤f( )<
⑥f( )>
當f(x)=2x時,則上述結論中成立的是(填入你認為正確的所有結論的序號)

查看答案和解析>>

同步練習冊答案