3.已知向量$\overrightarrow{a}$=(cosθ,sinθ),θ∈(0,π),$\overrightarrow$=(1,$\sqrt{3}$),若$\overrightarrow{a}$與$\overrightarrow$共線(xiàn),則sin2θ=( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

分析 利用向量共線(xiàn)定理、三角函數(shù)求值即可得出.

解答 解:∵$\overrightarrow{a}∥\overrightarrow$,
則sinθ-$\sqrt{3}$cosθ=0,
∴tanθ=$\sqrt{3}$,θ∈(0,π),
∴θ=$\frac{π}{3}$.
∴sin2θ=$sin\frac{2π}{3}$=$\frac{\sqrt{3}}{2}$.
故選:B.

點(diǎn)評(píng) 本題考查了向量共線(xiàn)定理、三角函數(shù)求值,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.若變量x,y滿(mǎn)足約束條件$\left\{\begin{array}{l}{x+y-2≥0}\\{x-y+2≥0}\\{x-2≤0}\end{array}\right.$,n=2x+y-2,則 取最大值時(shí),(2$\sqrt{x}$+$\frac{1}{x}$)n二項(xiàng)展開(kāi)式中的常數(shù)項(xiàng)為240.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.$\frac{sin(-340°)sin70°}{co{s}^{2}155°-si{n}^{2}25°}$的值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.用“<”或”>”填空:($\frac{1}{3}$)0.8<($\frac{1}{3}$)0.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知cos(π+α)•$cos(\frac{π}{2}+α)$=$\frac{60}{169}$,且$\frac{π}{4}$<α<$\frac{π}{2}$,求sin α與cos α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)函數(shù)f(x)=|2x+1|-|x-4|.
(I)解不等式f(x)>2;
(II)求函數(shù)y=f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.(I)已知直線(xiàn)y=2x是△ABC中∠C的平分線(xiàn)所在的直線(xiàn),若點(diǎn)A,B的坐標(biāo)分別是(-4,2),(3,1),求點(diǎn)C的坐標(biāo).
(II)已知點(diǎn)A(1,1),B(2,2),點(diǎn)P在直線(xiàn)y=$\frac{1}{2}$x上,求|PA|2+|PB|2取得最小值時(shí)P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.為了調(diào)查甲、乙兩個(gè)網(wǎng)站受歡迎的程度,隨機(jī)選取了14天,統(tǒng)計(jì)上午8:00-10:00間各自的點(diǎn)擊量,得如下數(shù)據(jù):
甲:73,24,58,72,64,38,66,70,20,41,55,67,8,25;
乙:12,37,21,5,54,42,61,45,19,6,19,36,42,14;
(1)用莖葉圖表示上面的數(shù)據(jù);
(2)甲網(wǎng)站點(diǎn)擊量在[10,40]間的頻率是多少?
(3)從統(tǒng)計(jì)的角度考慮,你認(rèn)為哪個(gè)網(wǎng)站更受歡迎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.設(shè)全集U=R,集合A={x|-1<x<4},B={y|y=x+1,x∈A},則A∩B=(0,4);(∁UA)∩(∁UB)=(-∞,-1]∪[5,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案