【題目】有下列四個(gè)命題:(1)一定存在直線,使函數(shù)的圖像與函數(shù)的圖像關(guān)于直線對(duì)稱;(2)不等式:的解集為;(3)已知數(shù)列的前項(xiàng)和為,,則數(shù)列一定是等比數(shù)列;(4)過拋物線上的任意一點(diǎn)的切線方程一定可以表示為.則正確命題的序號(hào)為_________________.

【答案】3)(4

【解析】

1)中,可利用函數(shù)關(guān)于軸對(duì)稱進(jìn)行判定;

2)中,利用反三角函數(shù)的定義,直接求出符合條件的解集,即可判定;

3)利用求得數(shù)列的通項(xiàng)公式,即可判定;

4)利用直線過點(diǎn),且與拋物線有且僅有一個(gè)交點(diǎn),即可判定.

對(duì)于(1)中,由函數(shù)關(guān)于軸對(duì)稱,而函數(shù)的圖像與函數(shù)的圖象向上平移的幅度不一樣,所以它們不關(guān)于軸對(duì)稱,所以找不到這樣的直線滿足題意,所以不正確;

對(duì)于(2)中,因?yàn)?/span>時(shí),

所以不等式的解集為是不正確的;

對(duì)于(3)中,由,當(dāng)時(shí),,滿足上式,

所以數(shù)列是一個(gè)等比數(shù)列,

所以數(shù)列的前項(xiàng)和為,則數(shù)列一定是等比數(shù)列是正確的;

對(duì)于(4)中,由直線過點(diǎn),且與拋物線有且僅有一個(gè)交點(diǎn),所以過拋物線上的任意一點(diǎn)的切線方程一定可以表示為是正確的.

故答案為:(3)(4.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中:①若“”是“”的充要條件;

②若“,”,則實(shí)數(shù)的取值范圍是;

③已知平面、、,直線、,若,,,則;

④函數(shù)的所有零點(diǎn)存在區(qū)間是.

其中正確的個(gè)數(shù)是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

的單調(diào)區(qū)間和極值;

當(dāng)時(shí),若,且,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)定義:設(shè)是非零實(shí)常數(shù),若對(duì)于任意的,都有,則稱函數(shù)為“關(guān)于的偶型函數(shù)”

1)請(qǐng)以三角函數(shù)為例,寫出一個(gè)“關(guān)于2的偶型函數(shù)”的解析式,并給予證明

2)設(shè)定義域?yàn)榈摹瓣P(guān)于的偶型函數(shù)”在區(qū)間上單調(diào)遞增,求證在區(qū)間上單調(diào)遞減

3)設(shè)定義域?yàn)?/span>的“關(guān)于的偶型函數(shù)”是奇函數(shù),若,請(qǐng)猜測的值,并用數(shù)學(xué)歸納法證明你的結(jié)論

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在開展學(xué)習(xí)強(qiáng)國的活動(dòng)中,某校高三數(shù)學(xué)教師成立了黨員和非黨員兩個(gè)學(xué)習(xí)組,其中黨員學(xué)習(xí)組有4名男教師、1名女教師,非黨員學(xué)習(xí)組有2名男教師、2名女教師,高三數(shù)學(xué)組計(jì)劃從兩個(gè)學(xué)習(xí)組中隨機(jī)各選2名教師參加學(xué)校的挑戰(zhàn)答題比賽.

1)求選出的4名選手中恰好有一名女教師的選派方法數(shù);

2)記X為選出的4名選手中女教師的人數(shù),求X的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)生對(duì)函數(shù)的性質(zhì)進(jìn)行研究,得出如下的結(jié)論:

函數(shù)在上單調(diào)遞減,在上單調(diào)遞增;

點(diǎn)是函數(shù)圖象的一個(gè)對(duì)稱中心;

函數(shù)圖象關(guān)于直線對(duì)稱;

存在常數(shù),使對(duì)一切實(shí)數(shù)x均成立,

其中正確命題的個(gè)數(shù)是( )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為降低霧霾等惡劣氣候?qū)用竦挠绊,某公司研發(fā)了一種新型防霧霾產(chǎn)品.每一臺(tái)新產(chǎn)品在進(jìn)入市場前都必須進(jìn)行兩種不同的檢測,只有兩種檢測都合格才能進(jìn)行銷售,否則不能銷售.已知該新型防霧霾產(chǎn)品第一種檢測不合格的概率為,第二種檢測不合格的概率為,兩種檢測是否合格相互獨(dú)立.

1)求每臺(tái)新型防霧霾產(chǎn)品不能銷售的概率;

2)如果產(chǎn)品可以銷售,則每臺(tái)產(chǎn)品可獲利40元;如果產(chǎn)品不能銷售,則每臺(tái)產(chǎn)品虧損80元(即獲利元).現(xiàn)有該新型防霧霾產(chǎn)品3臺(tái),隨機(jī)變量表示這3臺(tái)產(chǎn)品的獲利,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面平面ABCD,底面ABCD是直角梯形,,,,OAD的中點(diǎn).

1)在線段PA上找一點(diǎn)E,使得平面PCD,并證明;

2)在(1)的條件下,若,求平面OBE與平面POC所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,棱長為a的正方體,N是棱的中點(diǎn);

1)求直線AN與平面所成角的大;

2)求到平面ANC的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案