【題目】如圖所示的矩形中, ,點(diǎn)為邊上異于, 兩點(diǎn)的動(dòng)點(diǎn),且, 為線段的中點(diǎn),現(xiàn)沿將四邊形折起,使得與的夾角為,連接, .
(1)探究:在線段上是否存在一點(diǎn),使得平面,若存在,說(shuō)明點(diǎn)的位置,若不存在,請(qǐng)說(shuō)明理由;
(2)求三棱錐的體積的最大值,并計(jì)算此時(shí)的長(zhǎng)度.
【答案】(1)見(jiàn)解析.(2)見(jiàn)解析.
【解析】試題分析:(1) 取線段EF的中點(diǎn)M,易證GM∥DF ,從而得到GM∥平面BDF;(2) 因?yàn)?/span>CF∥DE,且AE與CF的夾角為60°,故AE與DE的夾角為60°,利用等體積法表示體積,進(jìn)而得到體積的最大值,及此時(shí)DE的長(zhǎng)度.
試題解析:
(1)如圖所示,取線段EF的中點(diǎn)M,下證GM∥平面BDF;
因?yàn)?/span>G為線段ED中點(diǎn),M為線段EF的中點(diǎn),
故GM為△EDF的中位線,故GM∥DF,
又GM平面BDF,DF平面BDF,故GM∥平面BDF;
(2)因?yàn)?/span>CF∥DE,且AE與CF的夾角為60°,
故AE與DE的夾角為60°,
過(guò)D作DP垂直于AE交AE于P,
因?yàn)?/span>DE⊥EF,AE⊥EF,故DP為點(diǎn)D到平面ABFE的距離,
設(shè)DE=x,則AE=BF=4-x,
由①知GM∥DF,
故VG-BDF=VM-BDF=VD-MBF=·S△MBF·DP=××x
=·x≤,
當(dāng)且僅當(dāng)4-x=x時(shí)等號(hào)成立,此時(shí)x=DE=2,
故三棱錐G-BDF的體積最大值為,此時(shí)DE的長(zhǎng)度為2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是拋物線上的兩個(gè)點(diǎn),點(diǎn)的坐標(biāo)為,直線的斜率為.設(shè)拋物線的焦點(diǎn)在直線的下方.
(Ⅰ)求k的取值范圍;
(Ⅱ)設(shè)C為W上一點(diǎn),且,過(guò)兩點(diǎn)分別作W的切線,記兩切線的交點(diǎn)為. 判斷四邊形是否為梯形,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓與直線相切.
(1)若直線與圓交于兩點(diǎn),求;
(2)設(shè)圓與軸的負(fù)半軸的交點(diǎn)為,過(guò)點(diǎn)作兩條斜率分別為的直線交圓于兩點(diǎn),且,試證明直線恒過(guò)一定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校運(yùn)動(dòng)會(huì)的立定跳遠(yuǎn)和30秒跳繩兩個(gè)單項(xiàng)比賽分成預(yù)賽和決賽兩個(gè)階段.下表為10名學(xué)生的預(yù)賽成績(jī),其中有三個(gè)數(shù)據(jù)模糊.
學(xué)生序號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
立定跳遠(yuǎn)(單位:米) | 1.96 | 1.92 | 1.82 | 1.80 | 1.78 | 1.76 | 1.74 | 1.72 | 1.68 | 1.60 |
30秒跳繩(單位:次) | 63 | a | 75 | 60 | 63 | 72 | 70 | a1 | b | 65 |
在這10名學(xué)生中,進(jìn)入立定跳遠(yuǎn)決賽的有8人,同時(shí)進(jìn)入立定跳遠(yuǎn)決賽和30秒跳繩決賽的有6人,則
(A)2號(hào)學(xué)生進(jìn)入30秒跳繩決賽
(B)5號(hào)學(xué)生進(jìn)入30秒跳繩決賽
(C)8號(hào)學(xué)生進(jìn)入30秒跳繩決賽
(D)9號(hào)學(xué)生進(jìn)入30秒跳繩決賽
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)為圓的圓心, 是圓上的動(dòng)點(diǎn),點(diǎn)在圓的半徑上,且有點(diǎn)和上的點(diǎn),滿足, .
(1)當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),求點(diǎn)的軌跡方程;
(2)若斜率為的直線與圓相切,直線與(1)中所求點(diǎn)的軌跡交于不同的兩點(diǎn), , 是坐標(biāo)原點(diǎn),且時(shí),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn.已知2Sn=3n+3.
(1)求{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足anbn=log3an,求{bn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=axlnx﹣x+l (a∈R),且f(x)≥0.
(I)求a;
( II)求證:當(dāng),n∈N*時(shí),
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.已知曲線C:ρsin2θ=2acos θ(a>0),過(guò)點(diǎn)P(-2,-4)的直線l的參數(shù)方程為,直線l與曲線C分別交于M,N兩點(diǎn).若|PM|,|MN|,|PN|成等比數(shù)列,則a的值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)需要設(shè)計(jì)一個(gè)倉(cāng)庫(kù),它由上下兩部分組成,上部的形狀是正四棱錐P—A1B1C1D1,下部的形狀是正四棱柱ABCD—A1B1C1D1(如圖所示),并要求正四棱柱的高O1O是正四棱錐的高PO1的4倍.
(1)若AB=6 m,PO1=2 m,則倉(cāng)庫(kù)的容積是多少?
(2)若正四棱錐的側(cè)棱長(zhǎng)為6 m,則當(dāng)PO1為多少時(shí),倉(cāng)庫(kù)的容積最大?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com