【題目】(本小題滿分12分)已知橢圓C:的離心率為,連接橢圓四個(gè)頂點(diǎn)形成的四邊形面積為4.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)A(1,0)的直線與橢圓C交于點(diǎn)M, N,設(shè)P為橢圓上一點(diǎn),且O為坐標(biāo)原點(diǎn),當(dāng)時(shí),求t的取值范圍.
【答案】(1);(2).
【解析】
試題本題主要考查橢圓的標(biāo)準(zhǔn)方程及其幾何性質(zhì)、直線與橢圓的位置關(guān)系等基礎(chǔ)知識(shí),考查學(xué)生的分析問(wèn)題解決問(wèn)題的能力、轉(zhuǎn)化能力、計(jì)算能力.第一問(wèn),先利用離心率、、四邊形的面積列出方程,解出a和b的值,從而得到橢圓的標(biāo)準(zhǔn)方程;第二問(wèn),討論直線MN的斜率是否存在,當(dāng)直線MN的斜率存在時(shí),直線方程與橢圓方程聯(lián)立,消參,利用韋達(dá)定理,得到、,利用列出方程,解出,代入到橢圓上,得到的值,再利用,計(jì)算出的范圍,代入到的表達(dá)式中,得到t的取值范圍.
試題解析:(1),,即.
又,.
∴橢圓C的標(biāo)準(zhǔn)方程為.
(2)由題意知,當(dāng)直線MN斜率存在時(shí),
設(shè)直線方程為,,
聯(lián)立方程消去y得,
因?yàn)橹本與橢圓交于兩點(diǎn),
所以恒成立,
,
又,
因?yàn)辄c(diǎn)P在橢圓上,所以,
即,
又,
即,整理得:,
化簡(jiǎn)得:,解得或(舍),
,即.
當(dāng)直線MN的斜率不存在時(shí),,此時(shí),
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)設(shè)函數(shù),討論的單調(diào)性;
(2)設(shè)函數(shù),若的圖象與的圖象有,兩個(gè)不同的交點(diǎn),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)若函數(shù)在上為減函數(shù),求實(shí)數(shù)的最小值;
(2)若存在,使成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為了解中學(xué)生的課外閱讀時(shí)間,決定在該中學(xué)的1200名男生和800名女生中按分層抽樣的方法抽取20名學(xué)生,對(duì)他們的課外閱讀時(shí)間進(jìn)行問(wèn)卷調(diào)查.現(xiàn)在按課外閱讀時(shí)間的情況將學(xué)生分成三類:類(不參加課外閱讀),類(參加課外閱讀,但平均每周參加課外閱讀的時(shí)間不超過(guò)3小時(shí)),類(參加課外閱讀,且平均每周參加課外閱讀的時(shí)間超過(guò)3小時(shí)).調(diào)查結(jié)果如下表:
類 | 類 | 類 | |
男生 | 5 | 3 | |
女生 | 3 | 3 |
(1)求出表中,的值;
(2)根據(jù)表中的統(tǒng)計(jì)數(shù)據(jù),完成下面的列聯(lián)表,并判斷是否有90%的把握認(rèn)為“參加課外閱讀與否”與性別有關(guān);
男生 | 女生 | 總計(jì) | ||
不參加課外閱讀 | ||||
參加課外閱讀 | ||||
總計(jì) |
P(K≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】半正多面體(semiregular solid) 亦稱“阿基米德多面體”,是由邊數(shù)不全相同的正多邊形為面的多面體,體現(xiàn)了數(shù)學(xué)的對(duì)稱美.二十四等邊體就是一種半正多面體,是由正方體切截而成的,它由八個(gè)正三角形和六個(gè)正方形為面的半正多面體.如圖所示,圖中網(wǎng)格是邊長(zhǎng)為1的正方形,粗線部分是某二十四等邊體的三視圖,則該幾何體的體積為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】小王想在某市一住宅小區(qū)買套新房,據(jù)了解,該小區(qū)有若干棟互相平行的平頂樓房,每棟樓房有15層,每層樓高為3米,頂樓有1米高的隔熱層,兩樓之間相距60米.小王不想買最前面和最后面的樓房,但希望所買樓層全年每天正午都能曬到太陽(yáng).為此,小王查找了有關(guān)地理資料,獲得如下一些信息:①該市的緯度(地面一點(diǎn)所在球半徑與赤道平面所成的角)為北緯;②正午的太陽(yáng)直射北回歸線(太陽(yáng)光線與赤道平面所成的角為)時(shí),物體的影子最短,直射南回歸線(太陽(yáng)光線與赤道平面所成的角為)時(shí),物體的影子最長(zhǎng),那么小王買房的最低樓層應(yīng)為( )
A.3B.4C.5D.6
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,已知曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求曲線的普通方程和直線的直角坐標(biāo)方程;
(2)若射線的極坐標(biāo)方程為().設(shè)與相交于點(diǎn),與相交于點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的導(dǎo)函數(shù)是偶函數(shù),若方程在區(qū)間(其中為自然對(duì)數(shù)的底)上有兩個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com