【題目】已知橢圓:()的左,右頂點分別為,,長軸長為,且經(jīng)過點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若為橢圓上異于,的任意一點,證明:直線,的斜率的乘積為定值;
(3)已知兩條互相垂直的直線,都經(jīng)過橢圓的右焦點,與橢圓交于,和,四點,求四邊形面積的取值范圍.
【答案】(1)(2)定值,證明見解析;(3)
【解析】
(1)由長軸長為4可求,再由待定系數(shù)法把點代入橢圓方程即可求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點,,點在橢圓上可得
代入上式化簡即可.
(3)當(dāng),中有一條斜率不存在時,;
當(dāng),的斜率都存在時,設(shè)過點的兩條互相垂直的直線:,直線:,聯(lián)立求出與,所以代入整理成關(guān)于的式子,求式子的值域即可.
解:(1)由題意知:,
橢圓的標(biāo)準(zhǔn)方程為.
(2)由已知,,設(shè)點,則
,又在橢圓上,
即,
(定值).
(3)當(dāng),中有一條斜率不存在時,易求得;
當(dāng),的斜率都存在時,設(shè)過點的兩條互相垂直的直線:,直線:
由得
顯然,,
則.
把上式中的換成得:
則四邊形的面積為
令,則,且,
,
,
所以四邊形的面積的取值范圍是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)前,以“立德樹人”為目標(biāo)的課程改革正在有序推進(jìn).高中聯(lián)招對初三畢業(yè)學(xué)生進(jìn)行體育測試,是激發(fā)學(xué)生、家長和學(xué)校積極開展體育活動,保證學(xué)生健康成長的有效措施.程度2019年初中畢業(yè)生升學(xué)體育考試規(guī)定,考生必須參加立定跳遠(yuǎn)、擲實心球、1分鐘跳繩三項測試,三項考試滿分50分,其中立定跳遠(yuǎn)15分,擲實心球15分,1分鐘跳繩20分.某學(xué)校在初三上期開始時要掌握全年級學(xué)生每分鐘跳繩的情況,隨機(jī)抽取了100名學(xué)生進(jìn)行測試,得到下邊頻率分布直方圖,且規(guī)定計分規(guī)則如下表:
每分鐘跳繩個數(shù) | ||||
得分 | 17 | 18 | 19 | 20 |
(1)請估計學(xué)生的跳繩個數(shù)的眾數(shù)、中位數(shù)和平均數(shù)(保留整數(shù));
(2)若從跳繩個數(shù)在、兩組中按分層抽樣的方法抽取9人參加正式測試,并從中任意選取2人,求兩人得分之和不大于34分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在原點,焦點在軸上,離心率為的橢圓過點
(1)求橢圓的方程;
(2)設(shè)不過原點的直線與該橢圓交于兩點,滿足直線的斜率依次成等比數(shù)列,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知變量、之間的線性回歸方程為,且變量、之間的一-組相關(guān)數(shù)據(jù)如下表所示,則下列說法錯誤的是( )
A.可以預(yù)測,當(dāng)時,B.
C.變量之間呈負(fù)相關(guān)關(guān)系D.該回歸直線必過點
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年,教育部發(fā)文確定新高考改革正式啟動,湖南、廣東、湖北等8省市開始實行新高考制度,從2018年下學(xué)期的高一年級學(xué)生開始實行.為了適應(yīng)新高考改革,某校組織了一次新高考質(zhì)量測評,在成績統(tǒng)計分析中,高二某班的數(shù)學(xué)成績的莖葉圖和頻率分布直方圖因故都受到不同程度的損壞,但可見部分如下,據(jù)此解答如下問題:
(1)求該班數(shù)學(xué)成績在的頻率及全班人數(shù);
(2)根據(jù)頻率分布直方圖估計該班這次測評的數(shù)學(xué)平均分;
(3)若規(guī)定分及其以上為優(yōu)秀,現(xiàn)從該班分?jǐn)?shù)在分及其以上的試卷中任取份分析學(xué)生得分情況,求在抽取的份試卷中至少有份優(yōu)秀的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在時鐘的表盤上作9個的扇形,每一個都覆蓋4個數(shù)字,每兩個覆蓋的數(shù)字不全相同.求證:一定可以找到3個扇形,恰好覆蓋整個表盤.舉一個反例說明,作8個扇形將不具有上述性質(zhì).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圓周上有1994個點,將它們?nèi)境扇舾煞N不同的顏色,且每種顏色的點數(shù)各不相同.今在每種顏色的點集中各取一個點,組成頂點顏色各不相同的圓內(nèi)接多邊形,為了要使這樣的多邊形個數(shù)最多,應(yīng)將1994個點染成多少種不同的顏色?且每種顏色的點集各含有多少個點?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)的圖像向右平移個單位后得到函數(shù),則具有性質(zhì)( )
A.最大值為1,圖像關(guān)于直線對稱
B.周期為,圖像關(guān)于點對稱
C.在上單調(diào)遞增,為偶函數(shù)
D.在上單調(diào)遞減,為奇函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動點M到定點F1(-2,0)和F2(2,0)的距離之和為.
(1)求動點M軌跡C的方程;
(2)設(shè)N(0,2),過點P(-1,-2)作直線l,交橢圓C于不同于N的A,B兩點,直線NA,NB的斜率分別為k1,k2,問k1+k2是否為定值?若是的求出這個值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com