【題目】如圖,三棱柱中,底面為等邊三角形,E,F分別為,的中點(diǎn),,.
(1)證明:平面;
(2)求直線與平面所成角的大小.
【答案】(1)證明見解析;(2)
【解析】
(1)通過(guò)計(jì)算可得,通過(guò)證明平面,可得,再根據(jù)直線與平面垂直的判定定理可得平面;
(2)先說(shuō)明直線,,兩兩垂直,再以,,的方向?yàn)?/span>x,y,z軸的正方向,以點(diǎn)E為原點(diǎn),建立空間直角坐標(biāo)系,然后利用空間向量可求得結(jié)果.
(1)證明:設(shè),∵,
則,,,
∵點(diǎn)E為棱的中點(diǎn),∴,
∴,∴.
∵三棱柱的側(cè)面為平行四邊形,
∴四邊形為矩形,
∵點(diǎn)F為棱的中點(diǎn),
∴,,
∴,∴.
∵三棱柱的底面是正三角形,E為的中點(diǎn),
∴.
∵,且平面,平面,且,相交,
∴平面,∵平面,∴,∵,
∴平面.
(2)由(1)可知平面,∴,∴平面,
∴三棱柱是正三棱柱,
設(shè)的中點(diǎn)為M,則直線,,兩兩垂直,
分別以,,的方向?yàn)?/span>x,y,z軸的正方向,以點(diǎn)E為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,
設(shè),,,,
則,,.
設(shè)平面的一個(gè)法向量為,則,則,則,
不妨取,則,則,所以,
設(shè)直線與平面所成角為,
則,
因?yàn)?/span>,所以
則直線與平面所成角的大小為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】商家通常依據(jù)“樂觀系數(shù)準(zhǔn)則”確定商品銷售價(jià)格,及根據(jù)商品的最低銷售限價(jià)a,最高銷售限價(jià)b(b>a)以及常數(shù)x(0<x<1)確定實(shí)際銷售價(jià)格c=a+x(b﹣a),這里,x被稱為樂觀系數(shù).
經(jīng)驗(yàn)表明,最佳樂觀系數(shù)x恰好使得(c﹣a)是(b﹣c)和(b﹣a)的等比中項(xiàng),據(jù)此可得,最佳樂觀系數(shù)x的值等于 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),是的導(dǎo)函數(shù).
(1)若,當(dāng)時(shí),函數(shù)在內(nèi)有唯一的極大值,求的取值范圍;
(2)若,,試研究的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某疫苗進(jìn)行安全性臨床試驗(yàn).該疫苗安全性的一個(gè)重要指標(biāo)是:注射疫苗后人體血液中的高鐵血紅蛋白(MetHb)的含量(以下簡(jiǎn)稱為“M含量”)不超過(guò)1%,則為陰性,認(rèn)為受試者沒有出現(xiàn)高鐵血紅蛋白血癥(簡(jiǎn)稱血癥);若M含量超過(guò)1%,則為陽(yáng)性,認(rèn)為受試者出現(xiàn)血癥.若一批受試者的M含量平均數(shù)不超過(guò)0.65%,且出現(xiàn)血癥的被測(cè)試者的比例不超過(guò)5%,則認(rèn)為該疫苗在M含量指標(biāo)上是“安全的”;否則為“不安全”.現(xiàn)有男、女志愿者各200名接受了該疫苗注射,按照性別分層,隨機(jī)抽取50名志愿者進(jìn)行M含量的檢測(cè),其中女性志愿者被檢測(cè)出陽(yáng)性的恰好1人.經(jīng)數(shù)據(jù)整理,制得頻率分布直方圖如下.(注:在頻率分布直方圖中,同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表.)
(1)請(qǐng)說(shuō)明該疫苗在M含量指標(biāo)上的安全性;
(2)請(qǐng)利用樣本估計(jì)總體的思想,完成這400名志愿者的列聯(lián)表,并判斷是否有超過(guò)99%的把握認(rèn)為,注射疫苗后,高鐵血紅蛋白血癥與性別有關(guān)?
男 | 女 | |
陽(yáng)性 | ||
陰性 |
附:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高校在年的自主招生考試成績(jī)中隨機(jī)抽取名學(xué)生的筆試成績(jī),按成績(jī)共分五組,得到如下的頻率分布表:
組號(hào) | 分組 | 頻數(shù) | 頻率 |
第一組 | |||
第二組 | |||
第三組 | |||
第四組 | |||
第五組 |
(1)請(qǐng)寫出頻率分布表中、、的值,若同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的中間值代替,請(qǐng)估計(jì)全體考生的平均成績(jī);
(2)為了能選出最優(yōu)秀的學(xué)生,高校決定在筆試成績(jī)高的第、、組中用分層抽樣的方法抽取名考生進(jìn)入第二輪面試,求第、、組中每組各抽取多少名考生進(jìn)入第二輪的面試;
(3)在(2)的前提下,學(xué)校要求每個(gè)學(xué)生需從、兩個(gè)問(wèn)題中任選一題作為面試題目,求第三組和第五組中恰好有個(gè)學(xué)生選到問(wèn)題的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a,b,c為正實(shí)數(shù),且滿足a+b+c=1.證明:
(1)|a|+|b+c﹣1|;
(2)(a3+b3+c3)()≥3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)一個(gè)量用兩種方法分別算一次,由結(jié)果相同而構(gòu)造等式,這種方法稱為“算兩次”的思想方法.利用這種方法,結(jié)合二項(xiàng)式定理,可以得到很多有趣的組合恒等式.
(1)根據(jù)恒等式兩邊的系數(shù)相同直接寫出一個(gè)恒等式,其中;
(2)設(shè),利用上述恒等式證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,且,數(shù)列是公差為0的等差數(shù)列,且滿足,是和的等比數(shù)列.
(1)求數(shù)列和的通項(xiàng)公式;
(2)求;
(3)設(shè)數(shù)列的通項(xiàng)公式,求;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),,其中,是自然對(duì)數(shù)的底數(shù).
(1)若在上存在兩個(gè)極值點(diǎn),求的取值范圍;
(2)若,,函數(shù)與函數(shù)的圖象交于,,且線段的中點(diǎn)為,證明:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com