16.有5件產(chǎn)品,其中3件正品,2件次品,從中任取2件,則互斥而不對立的兩個事件是( 。
A.至少有1件次品與至多有1件正品B.恰有1件次品與恰有2件正品
C.至少有1件次品與至少有1件正品D.至少有1件次品與都是正品

分析 利用對立事件、互斥事件定義求解.

解答 解:有5件產(chǎn)品,其中3件正品,2件次品,從中任取2件,
在A中,至少有1件次品與至多有1件正品能同時發(fā)生,不是互斥事件,故A錯誤;
在B中,恰有1件次品與恰有2件正品不能同時發(fā)生,但能同時不發(fā)生,是互斥而不對立的兩個事件,故B正確;
在C中,至少有1件次品與至少有1件正品能同時發(fā)生,不是互斥事件,故C錯誤;
在D中,至少有1件次品與都是正品是對立事件,故D錯誤.
故選:B.

點評 本題考查互斥而不對立的兩個事件的判斷,是基礎題,解題時要認真審題,注意對立事件、互斥事件定義的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

6.點P在曲線C:$\frac{x^2}{4}+{y^2}$=1上,若存在過點P的直線交曲線C于A點,交直線l:x=4于B點,且滿足|PA|=|PB|,則稱P點為“二中點”,那么下列結論正確的是( 。
A.曲線C上的所有點都是“二中點”
B.曲線C上的僅有有限個點是“二中點”
C.曲線C上的所有點都不是“二中點”
D.曲線C上的有無窮多個點(但不是所有的點)是“二中點”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.如圖,直三棱柱(側棱垂直于底面)ABC-A1B1C1中,CA=CB=$\frac{1}{2}$CC1,點D是棱AA1的中點,且C1D⊥BD
(1)求證:CA⊥CB
(2)求直線CD與平面C1BD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.$\root{5}{-32}$=-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知函數(shù)f(x)滿足f(x-1)=x2,則f(x)的解析式為( 。
A.f(x)=(x+1)2B.f(x)=(x-1)2C.f(x)=x2+1D.f(x)=x2-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.設A,B為拋物線y2=2px(p>0)上相異兩點,則${|{\overrightarrow{OA}+\overrightarrow{OB}}|^2}-{|{\overrightarrow{AB}}|^2}$的最小值為-4p2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知拋物線y2=4x的焦點F與橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1( a>b>0)的一個焦點重合,它們在第一象限內的交點為P,且PF與x軸垂直,則橢圓的離心率為$\sqrt{2}$-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.如圖所示,已知⊙O的半徑是1,點C在直徑AB的延長線上,BC=1,點P是⊙O上半圓上的一個動點,以PC為邊作等邊三角形PCD,且點D與圓心分別在PC的兩側.
(Ⅰ)若∠POB=θ,0<θ<π,試將四邊形OPDC的面積y表示為關于θ的函數(shù);
(Ⅱ)求四邊形OPDC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.(文)如圖,四邊形ABCD是梯形,四邊形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,AB=AD=DE=12CD.M是線段AE上的動點.
(Ⅰ)試確定點M的位置,使AC∥平面DMF,并說明理由;
(Ⅱ)在(Ⅰ)的條件下,求三棱錐F-DEM與幾何體ADE-BCF的體積之比.

查看答案和解析>>

同步練習冊答案