如圖,在△ABC中,G為中線AM的中點,O為△ABC外一點,若
OA
=
a
,
OB
=
b
,
OC
=
c
,求
OG
(用
a
、
b
、
c
表示)
考點:平面向量的基本定理及其意義,向量加減混合運(yùn)算及其幾何意義
專題:平面向量及應(yīng)用
分析:利用向量的三角形法則、平行四邊形法則、共線定理即可得出.
解答: 解:∵G為中線AM的中點,
AG
=
1
2
AM

∵M(jìn)為BC的中點,∴
AM
=
1
2
(
AB
+
AC
)

OG
=
OA
+
AG
=
OA
+
1
2
AM

=
OA
+
1
2
1
2
(
AB
+
AC
)

=
OA
+
1
4
(
OB
-
OA
)+
1
4
(
OC
-
OA
)

=
1
2
OA
+
1
4
OB
+
1
4
OC

=
1
2
a
+
1
4
b
+
1
4
c
點評:本題考查了向量的三角形法則、平行四邊形法則、共線定理,考查了推理能力和計算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列數(shù)列為等比數(shù)列的是( 。
A、1,2,3,4,5,6,…
B、1,2,4,8,16,32,…
C、0,0,0,0,0,0,…
D、1,-2,3,-4,5,-6,…

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在長方體ABCD-A1B1C1D1中,下列關(guān)于
AC1
的表達(dá)中錯誤的一個是(  )
A、
AA1
+
A1B1
+
A1D1
B、
AB
+
DD1
+
D1C1
C、
AD
+
CC1
+
D1C1
D、
1
2
AB1 
+
CD1
)+
A1C1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)與直線l:x=m(m∈R),四點(3,-1),(-2
2
,0),(-3,1),(-
3
,-
3
)中有三個點在橢圓C上,剩余一個點在直線l上.
(I)求橢圓C的方程;
(Ⅱ)若動點P在直線l上,過P作直線交橢圓C于M,N兩點,使得|PM|=|PN|,再過P作直線l′⊥MN.證明直線l′恒過定點,并求出該定點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知極坐標(biāo)的極點與平面直角坐標(biāo)系的原點重合,極軸與x軸的正半軸重合,且長度單位相同,圓C的參數(shù)方程為
x=1+2cosα
y=
3
+2sinα
(α為參數(shù)),點Q的極坐標(biāo)為(4,-
3
).
(Ⅰ)寫出圓C的直角坐標(biāo)方程和極坐標(biāo)方程;
(Ⅱ)已知點P是圓C上的任意一點,求P,Q兩點間距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=ex(ax2+m)(其中a,m是實數(shù)).
(Ⅰ)當(dāng)a=1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若a=0,m=1,函數(shù)f(x)的圖象上有三個點:A(x1,f(x1),B(x2,f(x2),C(x3,f(x3),
滿足:x1<x2<x3,試判斷A,B,C三點是否在同一條直線上,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是矩形,側(cè)棱PD⊥底面ABCD,PD=CD,AB=4,BC=3,E是PD的中點.
(1)證明:PB∥平面ACE
(2)若Q為直線PB上任意一點,求幾何體Q-ACE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖:內(nèi)接于⊙O的△ABC的兩條高線AD、BE相交于點H,過圓心O作OF⊥BC于 F,連接AF交OH于點G,并延長CO交圓于點I.
(1)若
OF
AH
,試求λ的值;
(2)若
CH
=x
OA
+y
OB
,試求x+y的值;
(3)若O為原點,點B的坐標(biāo)為(-4,-3),點C的坐標(biāo)為C(4,-3),試求點G的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a>b>0,m>0,求證:
a+m
b+m
a
b

查看答案和解析>>

同步練習(xí)冊答案