【題目】已知函數(shù)f1(x)=;f2(x)=(x﹣1);f3(x)=loga(x+),(a>0,a≠1);f4(x)=x(),(x≠0),下面關于這四個函數(shù)奇偶性的判斷正確的是(  )
A.都是偶函數(shù)
B.一個奇函數(shù),一個偶函數(shù),兩個非奇非偶函數(shù)
C.一個奇函數(shù),兩個偶函數(shù),一個非奇非偶函數(shù)
D.一個奇函數(shù),三個偶函數(shù)

【答案】C
【解析】對于函數(shù)f1(x)= , 它的定義域為(﹣1,0)∪(0,1),f1(﹣x)=f1(x),
故f1(x)為偶函數(shù).
對于函數(shù)f2(x)=(x﹣1) 的定義域為(﹣∞,﹣1]∪(1,+∞),
它的定義域不關于原點對稱,故此函數(shù)f2(x)沒有奇偶性.
對于函數(shù)f3(x)=loga(x+)(a>0,a≠1),它的定義域為R,
f3(﹣x)=loga(﹣x+)=loga)=﹣loga(x+)=﹣f3(x),
故函數(shù)f3(x)為奇函數(shù).
對于函數(shù) f4(x)=x(),(x≠0),它的定義域為{x|x≠0},

=
故f4(x)為偶函數(shù),
故選:C.
先看各個函數(shù)的定義域是否關于原點對稱,再根據(jù)函數(shù)的奇偶性的定義進行判斷,從而得出結論。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A﹣{1,2,3,4,5,6,7,8,9),在集合A中任取三個元素,分別作為一個三位數(shù)的個位數(shù),十位數(shù)和百位數(shù),記這個三位數(shù)為a,現(xiàn)將組成a的三個數(shù)字按從小到大排成的三位數(shù)記為I(a),按從大到小排成的三位數(shù)記為D(a)(例如a=219,則I(a)=129,D(a)=921),閱讀如圖所示的程序框圖,運行相應的程序,任意輸入一個a,則輸出b的值為(  )

A.792
B.693
C.594
D.495

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】箱中有6張卡片,分別標有1,2,3,…,6。

(1)抽取一張記下號碼后不放回,再抽取一張記下號碼,求兩次之和為偶數(shù)的概率;

(2)抽取一張記下號碼后放回,再抽取一張記下號碼,求兩個號碼中至少一個為偶數(shù)的概率。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設平面點集A={(x,y)|(x﹣1)2+(y﹣1)2≤1},B={(x,y)|(x+1)2+(y+1)2≤1},C={(x,y)|y﹣≥0},則(A∪B)∩C所表示的平面圖形的面積是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)y=sin(x+)(x∈R)的圖象上所有點的縱坐標不變橫坐標縮小到原來的 , 再把圖象上各點向左平移個單位長度,則所得的圖象的解析式為(。
A.y=sin(2x+
B.y=sin(x+
C.y=sin(2x+
D.y=sin(x+

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知平面上的三點P(5,2)、F1(-6,0)、F2(6,0).

(1)求以F1、F2為焦點且過點P的橢圓的標準方程;

(2)設點P、F1、F2關于直線yx的對稱點分別為P′、F1′、F2′,求以F1′、F2為焦點且過點P的雙曲線的標準方程

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|x+4|-|x-1|.

(1)解不等式f(x)>3;

(2)若不等式f(x)+1≤4a-5×2a有解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(2﹣a)lnx+ +2ax(a≤0).
(1)當a=0時,求f(x)的極值;
(2)當a<0時,討論f(x)的單調(diào)性;
(3)若對任意的a∈(﹣3,﹣2),x1 , x2∈[1,3],恒有(m+ln3)a﹣2ln3>|f(x1)﹣f(x2)|成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知平面向量 、 滿足| |=| |=1, = ,若向量 滿足| + |≤1,則| |的最大值為(
A.1
B.
C.
D.2

查看答案和解析>>

同步練習冊答案