【題目】已知?jiǎng)訄A過(guò)點(diǎn)且與直線相切.
(1)求圓心的軌跡的方程;
(2)過(guò)的直線與交于,兩點(diǎn),分別過(guò),做的垂線,垂足為,,線段的中點(diǎn)為.
①求證:;
②記四邊形,的面積分別為,,若,求.
【答案】(1)(2)①證明見(jiàn)解析;②
【解析】
(1)根據(jù)拋物線的定義得到點(diǎn)的軌跡是以為焦點(diǎn),為準(zhǔn)線的拋物線,進(jìn)而求得方程;
(2)①設(shè),,則,,得到,設(shè)直線的方程為,與聯(lián)立,分,兩種情況,結(jié)合直線垂直的條件證得結(jié)果;
②根據(jù)三角形的面積比,得到坐標(biāo)比,結(jié)合①,從而得到,得到結(jié)果.
(1)∵動(dòng)圓過(guò)點(diǎn)且與直線相切,
∴點(diǎn)到的距離等于到的距離,
∴點(diǎn)的軌跡是以為焦點(diǎn),為準(zhǔn)線的拋物線,其方程為.
(2)①證法一:設(shè),,則,,
∵為線段的中點(diǎn),∴,
依題意可設(shè)直線的方程為,
由得,
,,,
∴,
當(dāng)時(shí),,關(guān)于軸對(duì)稱,點(diǎn)恰為與軸的交點(diǎn),滿足;
當(dāng)時(shí),,∴,∴,
綜上,.
證法二:連接,,設(shè)直線與軸的交點(diǎn)為,
∵軸,,∴,
同理,,
∴,
∴,
又,,∴,
∴,即.
②法一:由得,
同理,≌,
故,
由知,異號(hào),故,
∴,,
∴.
法二:由得,
同理,
故,
由對(duì)稱性,不妨設(shè)點(diǎn)在軸上方,直線的傾斜角為,
由定義易得,
∴,同理,
∴,即,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a,b,c為正實(shí)數(shù),且滿足a+b+c=1.證明:
(1)|a|+|b+c﹣1|;
(2)(a3+b3+c3)()≥3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,點(diǎn)在軸上,點(diǎn)在軸上,且,,當(dāng)點(diǎn)在軸上運(yùn)動(dòng)時(shí),動(dòng)點(diǎn)的軌跡為曲線.過(guò)軸上一點(diǎn)的直線交曲線于,兩點(diǎn).
(1)求曲線的軌跡方程;
(2)證明:存在唯一的一點(diǎn),使得為常數(shù),并確定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy上取兩個(gè)定點(diǎn)A1(,0),A2(,0),再取兩個(gè)動(dòng)點(diǎn)N1(0,m),N2(0,n),且mn=2.
(1)求直線A1N1與A2N2交點(diǎn)M的軌跡C的方程;
(2)過(guò)R(3,0)的直線與軌跡C交于P,Q,過(guò)P作PN⊥x軸且與軌跡C交于另一點(diǎn)N,F為軌跡C的右焦點(diǎn),若(λ>1),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)籠子里關(guān)著只貓,其中有只白貓,只黑貓.把籠門打開(kāi)一個(gè)小口,使得每次只能鉆出只貓.貓爭(zhēng)先恐后地往外鉆.如果只貓都鉆出了籠子,以表示只白貓被只黑貓所隔成的段數(shù).例如,在出籠順序?yàn)椤啊酢觥酢酢酢酢觥酢酢觥敝,則.
(1)求三只黑貓挨在一起出籠的概率;
(2)求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左頂點(diǎn)為A,O為坐標(biāo)原點(diǎn),,C的離心率為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知不經(jīng)過(guò)點(diǎn)A的直線交橢圓C于M,N兩點(diǎn),線段MN的中點(diǎn)為B,若,求證:直線l過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)去五年,我國(guó)的扶貧工作進(jìn)入了“精準(zhǔn)扶貧”階段.目前“精準(zhǔn)扶貧”覆蓋了全部貧困人口,東部幫西部,全國(guó)一盤棋的扶貧格局逐漸形成.到2020年底全國(guó)830個(gè)貧困縣都將脫貧摘帽,最后4335萬(wàn)貧困人口將全部脫貧,這將超過(guò)全球其他國(guó)家過(guò)去30年脫貧人口總和.2020年是我國(guó)打贏脫貧攻堅(jiān)戰(zhàn)收官之年,越是到關(guān)鍵時(shí)刻,更應(yīng)該強(qiáng)調(diào)“精準(zhǔn)”.為落實(shí)“精準(zhǔn)扶貧”政策,某扶貧小組,為一“對(duì)點(diǎn)幫扶”農(nóng)戶引種了一種新的經(jīng)濟(jì)農(nóng)作物,并指導(dǎo)該農(nóng)戶于2020年初開(kāi)始種植.已知該經(jīng)濟(jì)農(nóng)作物每年每畝的種植成本為1000元,根據(jù)前期各方面調(diào)查發(fā)現(xiàn),該經(jīng)濟(jì)農(nóng)作物的市場(chǎng)價(jià)格和畝產(chǎn)量均具有隨機(jī)性,且兩者互不影響,其具體情況如下表:
該經(jīng)濟(jì)農(nóng)作物畝產(chǎn)量(kg) | 該經(jīng)濟(jì)農(nóng)作物市場(chǎng)價(jià)格(元/kg) | |||||
概率 | 概率 |
(1)設(shè)2020年該農(nóng)戶種植該經(jīng)濟(jì)農(nóng)作物一畝的純收入為X元,求X的分布列;
(2)若該農(nóng)戶從2020年開(kāi)始,連續(xù)三年種植該經(jīng)濟(jì)農(nóng)作物,假設(shè)三年內(nèi)各方面條件基本不變,求這三年中該農(nóng)戶種植該經(jīng)濟(jì)農(nóng)作物一畝至少有兩年的純收入不少于16000元的概率;
(3)2020年全國(guó)脫貧標(biāo)準(zhǔn)約為人均純收入4000元.假設(shè)該農(nóng)戶是一個(gè)四口之家,且該農(nóng)戶在2020年的家庭所有支出與其他收入正好相抵,能否憑這一畝經(jīng)濟(jì)農(nóng)作物的純收入,預(yù)測(cè)該農(nóng)戶在2020年底可以脫貧?并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱錐,底面為正方形,且底面,過(guò)的平面與側(cè)面的交線為,且滿足(表示的面積).
(1)證明: 平面;
(2)當(dāng)時(shí),求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在棱長(zhǎng)為2的正方體中,分別是棱的中點(diǎn),是底面內(nèi)一動(dòng)點(diǎn),若直線與平面不存在公共點(diǎn),以下說(shuō)法正確的個(gè)數(shù)是( )
①三棱錐的體積為定值;
②的面積的最小值為;
③平面;
④經(jīng)過(guò)三點(diǎn)的截面把正方體分成體積相等的兩部分.
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com