【題目】已知直線l過點P(0,2),斜率為k,圓Q:x2+y2﹣12x+32=0.
(1)若直線l和圓相切,求直線l的方程;
(2)若直線l和圓交于A、B兩個不同的點,問是否存在常數(shù)k,使得+共線?若存在,求出k的值;若不存在,請說明理由.

【答案】解:(1)將圓的方程化簡,得:(x﹣6)2+y2=4,圓心Q(6,0),半徑r=2.
設(shè)直線l的方程為:y=kx+2,故圓心到直線l的距離d==
因為直線l和圓相切,故d=r,即=2,解得k=0或k=﹣
所以,直線l的方程為y=2或3x+4y﹣8=0.
(2)將直線l的方程和圓的方程聯(lián)立,消y得:(1+k2)x2+4(k﹣3)x+36=0,
因為直線l和圓相交,故△=[4(k﹣3)]2﹣4×36×(1+k2)>0,解得﹣<k<0.
設(shè)A(x1 , y1)、B(x2 , y2),則有:x1+x2=;x1x2=
而y1+y2=kx1+2+kx2+2=k(x1+x2)+4,+=(x1+x2 , y1+y2),=(6,﹣2).
因為+共線,所以﹣2×(x1+x2)=6×(y1+y2).
即(1+3k)(x1+x2)+12=0,代入得(1+3k)[﹣]+12=0,解得k=﹣
又因為﹣<k<0,所以沒有符合條件的常數(shù)k.
【解析】(1)確定圓的圓心與半徑,設(shè)出直線方程,利用直線l和圓相切,建立方程,即可求得結(jié)論;
(2)將直線l的方程和圓的方程聯(lián)立,利用韋達定理,及+共線,結(jié)合根的判別式,可得結(jié)論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= +x,x∈[3,5].
(1)判斷函數(shù)f(x)的單調(diào)性,并利用單調(diào)性定義證明;
(2)求函數(shù)f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC是圓O的直徑,點B在圓O上, , ,

(1)證明:

(2) 求平面所成的銳角二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求過點且與曲線相切的直線方程;

(Ⅱ)設(shè),其中為非零實數(shù),若有兩個極值點,且,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C過點(1,2)和(2,1),且圓心在直線x+y﹣4=0上.
(Ⅰ)求圓C的方程;
(Ⅱ)若一束光線l自點A(﹣3,3)發(fā)出,射到x軸上,被x軸反射到圓C上,若反射點為M(a,0),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓)的左、右焦點分別為, ,點在橢圓.

(1)求橢圓的標(biāo)準(zhǔn)方程;

2)是否存在斜率為2的直線,使得當(dāng)直線與橢圓有兩個不同交點時,能在直線上找到一點,在橢圓上找到一點,滿足?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從1開始的自然數(shù)按如圖所示的規(guī)則排列,現(xiàn)有一個三角形框架在圖中上下或左右移動,使每次恰有九個數(shù)在此三角形內(nèi),則這九個數(shù)的和可以為( )

A.2097 B.2112 C.2012 D.2090

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖.已知等腰梯形ABCD中,AB∥CD,AD=AB=CD,M是的CD的中點.N是AC與BM的交點,將△BCM沿BM向上翻折成△BPM,使平面BPM⊥平面ABMD
(I)求證:AB⊥PN.
(Ⅱ)若E為PA的中點.求證:EN∥平面PDM.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)點,直線,點在直線上移動, 是線段軸的交點, .

(Ⅰ) 求動點的軌跡的方程;

(Ⅱ)直線軸相交于點,過的直線交軌跡兩點,

試探究點與以為直徑的圓的位置關(guān)系,并加以說明.

查看答案和解析>>

同步練習(xí)冊答案