【題目】如圖所示,正方體的棱長為1為線段上的動點,過點的平面截該正方體的截面記為S,則下列命題正確的是______

①當(dāng)時,S為等腰梯形;

②當(dāng)分別為,的中點時,幾何體的體積為

③當(dāng)M中點且時,S的交點為R,滿足

④當(dāng)M中點且時,S為五邊形;

⑤當(dāng)時,S的面積.

【答案】①②

【解析】

對五個命題逐一畫出圖像,進(jìn)行分析,判斷出其中的真命題,由此得出正確命題的序號.

對于①,畫出圖像如下圖所示,過,交,截面為,由于,所以,故,所以,即截面為等腰梯形.故①正確.

對于②,以為空間坐標(biāo)原點,分別為軸,建立空間直線坐標(biāo)系,則,則,.設(shè)平面的法向量為,則,令,則,故.則點到平面的距離為.而,故,故②命題正確.

對于③,延長的延長線于,連接,由于,所以,故.由于,所以,故,故③判斷錯誤.

對于④,當(dāng)時,截面為三角形,故④判斷錯誤.

對于⑤,延長,交的延長線于,連接,交,則截面為四邊形.由于,所以,面積比等于相似比的平方,即,故.在三角形中,,邊上的高為,故,所以.

綜上所述,本小題正確的命題有①②.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點分別為,點為坐標(biāo)原點).

(1)求拋物線的方程;

(2)過點的直線交的下半部分于點,交的左半部分于點,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,,四邊形和四邊形是兩個全等的等腰梯形.

(1)求證:四邊形為矩形;

(2)若平面平面,,,,求多面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在5件產(chǎn)品中,有3件一等品和2件二等品,從中任取2件,以為概率的事件是(  )

A. 恰有1件一等品 B. 至少有一件一等品

C. 至多有一件一等品 D. 都不是一等品

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

1)討論函數(shù)的單調(diào)性;

2)當(dāng)時,

①求函數(shù)上的最大值和最小值;

②若存在,,…,,使得成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某機(jī)構(gòu)為了了解不同年齡的人對一款智能家電的評價,隨機(jī)選取了50名購買該家電的消費(fèi)者,讓他們根據(jù)實際使用體驗進(jìn)行評分.

(Ⅰ)設(shè)消費(fèi)者的年齡為,對該款智能家電的評分為.若根據(jù)統(tǒng)計數(shù)據(jù),用最小二乘法得到關(guān)于的線性回歸方程為,且年齡的方差為,評分的方差為.求的相關(guān)系數(shù),并據(jù)此判斷對該款智能家電的評分與年齡的相關(guān)性強(qiáng)弱.

(Ⅱ)按照一定的標(biāo)準(zhǔn),將50名消費(fèi)者的年齡劃分為“青年”和“中老年”,評分劃分為“好評”和“差評”,整理得到如下數(shù)據(jù),請判斷是否有的把握認(rèn)為對該智能家電的評價與年齡有關(guān).

好評

差評

青年

8

16

中老年

20

6

附:線性回歸直線的斜率;相關(guān)系數(shù),獨(dú)立性檢驗中的,其中.

臨界值表:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若方程有五個不同的實數(shù)根,則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)一位高三班主任對本班50名學(xué)生學(xué)習(xí)積極性和對待班級工作的態(tài)度進(jìn)行調(diào)查,得到的統(tǒng)計數(shù)據(jù)如表所示:

積極參加班級工作

不積極參加班級工作

合計

學(xué)習(xí)積極性高

18

7

25

學(xué)習(xí)積極性不高

6

19

25

合計

24

26

50

如果隨機(jī)調(diào)查這個班的一名學(xué)生,求事件A:抽到不積極參加班級工作且學(xué)習(xí)積極性不高的學(xué)生的概率;

若不積極參加班級工作且學(xué)習(xí)積極性高的7名學(xué)生中有兩名男生,現(xiàn)從中抽取兩名學(xué)生參加某項活動,請用字母代表不同的學(xué)生列舉出抽取的所有可能結(jié)果;

的條件下,求事件B:兩名學(xué)生中恰有1名男生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).是曲線上的動點,將線段點順時針旋轉(zhuǎn)得到線段,設(shè)點的軌跡為曲線.以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系.

(I)求曲線,的極坐標(biāo)方程;

(II)在(I)的條件下,若射線與曲線,分別交于兩點(除極點外),且有定點,求面積.

查看答案和解析>>

同步練習(xí)冊答案