已知點(diǎn)P(2,2),圓C:x2+y2-8y=0,過點(diǎn)P的動(dòng)直線l與圓C交于A,B兩點(diǎn),線段AB的中點(diǎn)為M,O為坐標(biāo)原點(diǎn).
(1)當(dāng)弦AB長(zhǎng)度最短時(shí),求l的方程及弦AB的長(zhǎng)度;
(2)求M的軌跡方程.
考點(diǎn):直線和圓的方程的應(yīng)用
專題:綜合題,直線與圓
分析:(1)當(dāng)弦AB長(zhǎng)度最短時(shí),AB⊥MC,即可求l的方程及弦AB的長(zhǎng)度;
(2)由題設(shè)知
CM
MP
=0,即可求M的軌跡方程.
解答: 解:(1)圓C的方程可化為x2+(y-4)2=16,所以圓心為C(0,4),半徑為4.
當(dāng)AB⊥MC時(shí)弦AB最短,此時(shí)AB=2
R2-CP2
=4
2
,l的方程x-2y+2=0;
(2)設(shè)M(x,y),則
CM
=(x,y-4),
MP
=(2-x,2-y),
由題設(shè)知
CM
MP
=0,
故x(2-x)+(y-4)(2-y)=0,即(x-1)2+(y-3)2=2.
由于點(diǎn)P在圓C的內(nèi)部,
所以M的軌跡方程是(x-1)2+(y-3)2=2.
點(diǎn)評(píng):本題考查直線和圓的方程的應(yīng)用,考查軌跡方程,考查學(xué)生分析解決問題的能力,難度中等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=x-lnx的單調(diào)增區(qū)間為(  )
A、(0,1)
B、(-∞,0)
C、(1,+∞)
D、(-∞,0)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以A表示值域?yàn)镽的函數(shù)組成的集合,B表示具有如下性質(zhì)的函數(shù)φ(x)組成的集合:對(duì)于函數(shù)φ(x),存在一個(gè)正數(shù)M,使得函數(shù)φ(x)的值域包含于區(qū)間[-M,M].例如,當(dāng)φ1(x)=x3,φ2(x)=sinx時(shí),φ1(x)∈A,φ2(x)∈B.現(xiàn)有如下命題:
①設(shè)函數(shù)f(x)的定義域?yàn)镈,則“f(x)∈A”?“?b∈R,?x∈R,f(a)=b”;
②若函數(shù)f(x)∈B,則f(x)有最大值和最小值;
③若函數(shù)f(x),g(x)的定義域相同,且f(x)∈A,g(x)∈B,則f(x)+g(x)∉B;
④若函數(shù)f(x)=
ax
x2+1
(a∈R),則f(x)∈B.
其中的真命題有
 
.(寫出所有真命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=|2x+1|-|x-2|.
(1)解不等式f(x)>0;
(2)已知關(guān)于x的不等式a+3<f(x)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解下列不等式:
(1)|2-3x|≤
1
2

(2)|x|+|x+1|<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(a,b)(其中a≠b)在矩陣M=
cosα-sinα
sinαcosα
對(duì)應(yīng)的變換作用下得到點(diǎn)A(-b,a).
(Ⅰ)求矩陣M的逆矩陣M-1;
(Ⅱ)求曲線C:(x-1)2+y2=1在矩陣M-1所對(duì)應(yīng)的變換作用下得到的曲線C′的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知兩直線x-ky-k=0與y=k(x-1)平行,則k的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}為等比數(shù)列,前n項(xiàng)和為Sn,求證:Sn2+S2n2=Sn(S2n+S3n).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

把下列參數(shù)方程化為普通方程,并說(shuō)明它們各表示什么曲線:
(1)
x=4cosφ
y=-5sinφ
(φ為參數(shù));       
(2)
x=1-4t
y=2t
(t為參數(shù))

查看答案和解析>>

同步練習(xí)冊(cè)答案