設(shè)實(shí)數(shù)x、y滿足
x+2y≤6
2x+y≤6
x≥0,y≥0
,則z=max{2x+3y-1,x+2y+2}的取值范圍是( 。
A、[2,5]
B、[2,9]
C、[5,9]
D、[-1,9]
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對(duì)應(yīng)的平面區(qū)域,利用作差法求出z的表達(dá)式,然后根據(jù)平移,根據(jù)數(shù)形結(jié)合即可得到結(jié)論.
解答: 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:
2x+3y-1-(x+2y+2)=x+y-3,
即z=max{2x+3y-1,x+2y+2}=
2x+3y-1,x+y-3≥0
x+2y+2,x+y-3<0
,
其中直線x+y-3=0過(guò)A,C點(diǎn).
在直線x+y-3=0的上方,平移直線z=2x+3y-1(紅線),當(dāng)直線z=2x+3y-1經(jīng)過(guò)點(diǎn)B(2,2)時(shí),
直線z=2x+3y-1的截距最大,
此時(shí)z取得最大值為z=2×2+3×2-1=9.
在直線x+y-3=0的下方,平移直線z=x+2y+2(藍(lán)線),當(dāng)直線z=x+2y+2經(jīng)過(guò)點(diǎn)O(0,0)時(shí),
直線z=x+2y+2的截距最小,
此時(shí)z取得最小值為z=0+2=2.
即2≤z≤9,
故選:B.
點(diǎn)評(píng):本題主要考查線性規(guī)劃的應(yīng)用,根據(jù)z的幾何意義確定對(duì)應(yīng)的直線方程是截距本題的關(guān)鍵.難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=lnx+x2-ax(a∈R).
(Ⅰ)當(dāng)a=3時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)有兩個(gè)極值點(diǎn)x1,x2,且x1∈(0,1],求證:f(x1)-f(x2)≥-
3
4
+ln2;
(Ⅲ)設(shè)g(x)=f(x)+2ln
ax+2
6
x
,對(duì)于任意a∈(2,4),總存在x∈[
3
2
,2]
,使g(x)>k(4-a2)成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出以下判斷:
①已知定點(diǎn)A(-5,0),B(5,0)和動(dòng)點(diǎn)C,且滿足AC,BC所在直線斜率之積為2,則動(dòng)點(diǎn)C連同點(diǎn)A,B的軌跡為雙曲線;
②已知圓C1:(x-4)2+y2=169,圓C2:(x+4)2+y2=9,有一動(dòng)圓在圓C1的內(nèi)部且和圓C1內(nèi)切,和圓C2相外切,則動(dòng)圓圓心的軌跡為橢圓;
③已知正方體ABCD-A1B1C1D1中(如圖1),P是側(cè)面BB1C1C內(nèi)的動(dòng)點(diǎn),若P到直線BC和直線C1D1的距離相等,則動(dòng)點(diǎn)P的軌跡是線段;
④已知正方體ABCD-A1B1C1D1中(如圖2),M為AB中點(diǎn),棱長(zhǎng)為2,P是底面ABCD上的動(dòng)點(diǎn),且滿足條件PD1=
3PM,則動(dòng)點(diǎn)P在底面ABCD上形成的軌跡是圓.其中正確命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)x,y滿足不等式組
2x-y≤0
x+y-3≥0
x+2y≤m
,且z=x-y的最小值為-3,則實(shí)數(shù)m的值為(  )
A、-1
B、-
5
2
C、6
D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

“函數(shù)f(x)=logax在(0,+∞)上是增函數(shù)”是“函數(shù)g(x)=x2+2ax+1在(1,+∞)上是增函數(shù)”的( 。
A、充分但不必要條件
B、必要但不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以下四個(gè)命題:
①命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”;
②設(shè)函數(shù)f(x)=x+ln(x+
1+x2
),則對(duì)于任意實(shí)數(shù)a和b,“a+b<0”是“f(a)+f(b)<0”的充要條件;
③命題p:“?x∈R,x2+x+1<0”,則命題p的否定為“?x∈R,x2+x+1≥0”;
④在△ABC中,A<B是sinA<sinB的充分不必要條件;
其中真命題為( 。
A、①B、①②
C、①②③D、①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)z=2x+y,其中變量x,y滿足條件
x-4y≤-3
3x+5y≤25
x≥m
,若z的最小值為3,則m的值為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法錯(cuò)誤的是( 。
A、如果直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么此直線在平面內(nèi)
B、過(guò)空間中三點(diǎn),有且只有一個(gè)平面
C、若兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線
D、平行于同一條直線的兩條直線互相平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某同學(xué)在寒假期間進(jìn)行社會(huì)實(shí)踐活動(dòng),對(duì)[25,55]歲的人群隨機(jī)抽取行人進(jìn)行了一次生活習(xí)慣是否符合環(huán)保觀念的調(diào)查,若生活習(xí)慣符合環(huán)保觀念的稱為“環(huán)保族”,否則稱為“非環(huán)保族”,得到如下統(tǒng)計(jì)表和各年齡段人數(shù)的頻率分布直方圖:
組數(shù) 分組 環(huán)保數(shù)的人數(shù) 占本組的頻率
第一組 [25,30) 120 0.6
第二組 [30,35) 195 p
第三組 [35,40) 100 0.5
第四組 [40,45) a 0.4
第五組 [45,50) 30 0.3
第六組 [50,55] 15 0.3
(Ⅰ)補(bǔ)全頻率分布直方圖,并求n、a、p的值;
(Ⅱ)從[35,45)歲年齡段的“環(huán)保族”中采用分層抽樣法抽取16人參加戶外環(huán)保體驗(yàn)活動(dòng),其中選取3人作為領(lǐng)隊(duì),記選取的3名領(lǐng)隊(duì)中年齡在[35,40)歲的人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望EX.

查看答案和解析>>

同步練習(xí)冊(cè)答案