【題目】已知橢圓 的離心率 ,左右焦點分別為 是橢圓在第一象限上的一個動點,圓 與 的延長線, 的延長線以及線段 都相切, 為一個切點.
(1)求橢圓方程;
(2)設 ,過 且不垂直于坐標軸的動點直線 交橢圓于 兩點,若以 為鄰邊的平行四邊形是菱形,求直線的方程.
科目:高中數學 來源: 題型:
【題目】已知四棱錐P﹣ABCD及其三視圖如下圖所示,E是側棱PC上的動點.
(Ⅰ)求四棱錐P﹣ABCD的體積;
(Ⅱ)不論點E在何位置,是否都有BD⊥AE?試證明你的結論;
(Ⅲ)若點E為PC的中點,求二面角D﹣AE﹣B的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】國家“十三五”計劃,提出創(chuàng)新興國,實現(xiàn)中國創(chuàng)新,某市教育局為了提高學生的創(chuàng)新能力,把行動落到實處,舉辦一次物理、化學綜合創(chuàng)新技能大賽,某校對其甲、乙、丙、丁四位學生的物理成績(x)和化學成績(y)進行回歸分析,求得回歸直線方程為y=1.5x﹣35.由于某種原因,成績表(如表所示)中缺失了乙的物理和化學成績.
甲 | 乙 | 丙 | 丁 | |
物理成績(x) | 75 | m | 80 | 85 |
化學成績(y) | 80 | n | 85 | 95 |
綜合素質 | 155 | 160 | 165 | 180 |
(1)請設法還原乙的物理成績m和化學成績n;
(2)在全市物理化學科技創(chuàng)新比賽中,由甲、乙、丙、丁四位學生組成學校代表隊參賽.共舉行3場比賽,每場比賽均由賽事主辦方從學校代表中隨機抽兩人參賽,每場比賽所抽的選手中,只要有一名選手的綜合素質分高于160分,就能為所在學校贏得一枚榮譽獎章.若記比賽中贏得榮譽獎章的枚數為ξ,試根據上表所提供數據,預測該校所獲獎章數ξ的分布列與數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校課改實行選修走班制,現(xiàn)有甲,乙,丙,丁四位學生準備選修物理,化學,生物三個科目.每位學生只選修一個科目,且選修其中任何一個科目是等可能的.
(1)恰有2人選修物理的概率;
(2)選修科目個數ξ的分布列及期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐A﹣BCD中,AD⊥平面BCD,CB=CD,AD=DB,P,Q分別在線段AB,AC上,AP=3PB,AQ=2QC,M是BD的中點.
(Ⅰ)證明:DQ∥平面CPM;
(Ⅱ)若二面角C﹣AB﹣D的大小為 ,求∠BDC的正切值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近代統(tǒng)計學的發(fā)展起源于二十世紀初,它是在概率論的基礎上發(fā)展起來的,統(tǒng)計性質的工作可以追溯到遠古的“結繩記事”和《二十四史》中大量的關于我人口、錢糧、 水文、天文、地震等資料的記錄.近幾年,霧霾來襲,對某市該年11月份的天氣情況進行統(tǒng)計,結果如下:表一
日期 |
|
|
|
|
|
|
|
|
|
|
|
| |||
天氣 | 晴 | 霾 | 霾 | 陰 | 霾 | 霾 | 陰 | 霾 | 霾 | 霾 | 陰 | 晴 | 霾 | 霾 | 霾 |
日期 |
|
|
|
|
|
| |||||||||
天氣 | 霾 | 霾 | 霾 | 陰 | 晴 | 霾 | 霾 | 晴 | 霾 | 晴 | 霾 | 霾 | 霾 | 晴 | 霾 |
由于此種情況某市政府為減少霧霾于次年采取了全年限行的政策.
下表是一個調査機構對比以上兩年11月份(該年不限行 天、次年限行天共 天)的調查結果:
表二
不限行 | 限行 | 總計 | |
沒有霧霾 |
| ||
有霧霾 |
| ||
總計 |
(1)請由表一數據求 ,并求在該年11月份任取一天,估計該市是晴天的概率;
(2)請用統(tǒng)計學原理計算若沒有 的把握認為霧霾與限行有關系,則限行時有多少天沒有霧霾?
(由于不能使用計算器,所以表中數據使用時四舍五入取整數)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2cosxsin(x+ )﹣a,且x=﹣ 是方程f(x)=0的一個解.
(1)求實數a的值及函數f(x)的最小正周期;
(2)求函數f(x)的單調遞減區(qū)間;
(3)若關于x的方程f(x)=b在區(qū)間(0, )上恰有三個不相等的實數根x1 , x2 , x3 , 直接寫出實數b的取值范圍及x1+x2+x3的取值范圍(不需要給出解題過程)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=(log2x﹣2)(log4x﹣ )
(1)當x∈[2,4]時,求該函數的值域;
(2)若f(x)>mlog2x對于x∈[4,16]恒成立,求m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知O點為△ABC所在平面內一點,且滿足 +2 +3 = ,現(xiàn)將一粒質點隨機撒在△ABC內,若質點落在△AOC的概率為( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com