條件p:|x+1|>2,條件q:
1
4+x
<0,則?p是?q的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件
考點:必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:求出不等式的等價條件,利用充分條件和必要條件的定義進行判斷.
解答: 解:p:|x+1|>2,則¬p:|x+1|≤2,即-3≤x≤1,
1
4+x
<0得4+x<0,即x<-4,則¬q:x≥-4,
則?p是?q的充分不必要條件,
故選:A.
點評:本題主要考查充分條件和必要條件判斷,根據(jù)不等式的解法求出等價條件是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知M是橢圓
x2
25
+
y2
16
=1上在第一象限的點,點A和點B分別是橢圓的右頂點和上頂點,O為原點,求四邊形MAOB的面積的最大值(  )
A、10
B、10
2
C、200
D、200
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項的是Sn=n2,則a6的值是( 。
A、9B、10C、11D、12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

sin15°cos75°-cos15°sin105°的值為( 。
A、-
1
2
B、
1
2
C、
3
2
D、-
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將角
19π
5
表示為2kπ+α(k∈Z)的形式,則使|α|最小的角α是( 。
A、-
π
5
B、
π
5
C、-
5
D、
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

正方體ABCD-A1B1C1D1中,平面AB1D1和平面BC1D的位置關系為( 。
A、平行
B、相交但不垂直
C、垂直
D、可能平行,也可能相交

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設集合M={1,2,3},N={1,2},則M∪N等于( 。
A、{1,2}
B、{1,3}
C、{2,3}
D、{1,2,3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合,A={x|x<a+1}.B={x|x>-1}.
(1)若a=1,求A∩B;
(2)若A∪B=R,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

吉安市農業(yè)銀行的一個辦理儲蓄的窗口,有一些儲戶辦理業(yè)務,假設每位儲戶辦理業(yè)務的所需時間相互獨立,且該窗口辦理業(yè)務不間斷,對以往該窗口儲戶辦理業(yè)務的所需時間統(tǒng)計結果如下:
辦理業(yè)務所需時間(分) 1 2 3 4 5
頻率 0.2 0.3 0.3 0.1 0.1
從第一個儲戶辦理業(yè)務時計時,
(1)求到第3分鐘結束時辦理了業(yè)務的儲戶都辦完業(yè)務的概率;
(2)第三個儲戶辦理業(yè)務恰好等待4分鐘開始辦理業(yè)務的概率.

查看答案和解析>>

同步練習冊答案