【題目】已知橢圓 的離心率為,橢圓上的點(diǎn)到左焦點(diǎn)的最小值為.

(1)求橢圓的方程;

(2)已知直線(xiàn)軸交于點(diǎn),過(guò)點(diǎn)的直線(xiàn)交于兩點(diǎn),點(diǎn)為直線(xiàn)上任意一點(diǎn),設(shè)直線(xiàn)與直線(xiàn)交于點(diǎn),記,,的斜率分別為,,則是否存在實(shí)數(shù),使得恒成立?若是,請(qǐng)求出的值;若不是,請(qǐng)說(shuō)明理由.

【答案】(1) (2)見(jiàn)解析

【解析】

1)根據(jù)題干列出式子,結(jié)合求解即可;(2)設(shè)出直線(xiàn)方程,聯(lián)立直線(xiàn)和橢圓方程,設(shè),,,根據(jù)韋達(dá)定理化簡(jiǎn)得到結(jié)果.當(dāng)直線(xiàn)軸重合時(shí)驗(yàn)證即可.

(1)橢圓上的左頂點(diǎn)到左焦點(diǎn)的距離最小為

結(jié)合題干條件得到,解之得

,知故橢圓的方程為:,

(2)設(shè),,,

若直線(xiàn)軸不重合時(shí),設(shè)直線(xiàn)的方程為,點(diǎn),,

將直線(xiàn)代入橢圓方程整理得:

,顯然,則,,

若直線(xiàn)軸重合時(shí),則,,此時(shí),

,故.

綜上所述,存在實(shí)數(shù)符合題意.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某調(diào)查機(jī)構(gòu)對(duì)全國(guó)互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計(jì),得到整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖、90后從事互聯(lián)網(wǎng)行業(yè)者崗位分布條形圖,則下列結(jié)論中不一定正確的是( ).

注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.

A. 互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上

B. 互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過(guò)總?cè)藬?shù)的20%

C. 互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營(yíng)崗位的人數(shù)90后比80前多

D. 互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)拋物線(xiàn)的焦點(diǎn)為,過(guò)且斜率為的直線(xiàn)交于,兩點(diǎn),

(1)求的方程;

(2)求過(guò)點(diǎn),且與的準(zhǔn)線(xiàn)相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,底面為矩形,側(cè)面為正三角形,,,平面平面為棱上一點(diǎn)(不與、重合),平面交棱于點(diǎn).

1)求證:;

2)若二面角的余弦值為,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為了解廣告投入對(duì)銷(xiāo)售收益的影響,在若干地區(qū)各投入4萬(wàn)元廣告費(fèi)用,并將各地的銷(xiāo)售收益繪制成頻率分布直方圖(如圖所示).由于工作人員失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從0開(kāi)始計(jì)數(shù)的.

1)根據(jù)頻率分布直方圖計(jì)算圖中各小長(zhǎng)方形的寬度;

2)估計(jì)該公司投入4萬(wàn)元廣告費(fèi)用之后,對(duì)應(yīng)銷(xiāo)售收益的平均值(以各組的區(qū)間中點(diǎn)值代表該組的取值);

3)該公司按照類(lèi)似的研究方法,測(cè)得另外一些數(shù)據(jù),并整理得到下表:

廣告投入x(單位:萬(wàn)元)

1

2

3

4

5

銷(xiāo)售收益y(單位:萬(wàn)元)

1

3

4

7

表中的數(shù)據(jù)顯示,xy之間存在線(xiàn)性相關(guān)關(guān)系,請(qǐng)將(2)的結(jié)果填入上表的空白欄,并計(jì)算y關(guān)于x的回歸方程.

回歸直線(xiàn)的斜率和截距的最小二乘法估計(jì)公式分別為,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】曲線(xiàn).給出下列結(jié)論:

①曲線(xiàn)關(guān)于原點(diǎn)對(duì)稱(chēng);

②曲線(xiàn)上任意一點(diǎn)到原點(diǎn)的距離不小于1;

③曲線(xiàn)只經(jīng)過(guò)個(gè)整點(diǎn)(即橫縱坐標(biāo)均為整數(shù)的點(diǎn)).

其中,所有正確結(jié)論的序號(hào)是( )

A.①②B.C.②③D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn),拋物線(xiàn)上橫坐標(biāo)為的點(diǎn)到焦點(diǎn)的距離為.

(Ⅰ)求拋物線(xiàn)的方程及其準(zhǔn)線(xiàn)方程;

(Ⅱ)過(guò)的直線(xiàn)交拋物線(xiàn)于不同的兩點(diǎn),交直線(xiàn)于點(diǎn),直線(xiàn)交直線(xiàn)于點(diǎn). 是否存在這樣的直線(xiàn),使得? 若不存在,請(qǐng)說(shuō)明理由;若存在,求出直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓:,過(guò)橢圓右焦點(diǎn)的最短弦長(zhǎng)是,且點(diǎn)在橢圓上.

1)求該橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)動(dòng)點(diǎn)滿(mǎn)足:,其中,是橢圓上的點(diǎn),直線(xiàn)與直線(xiàn)的斜率之積為,求點(diǎn)的軌跡方程并判斷是否存在兩個(gè)定點(diǎn)、,使得為定值?若存在,求出定值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某射手射擊1,擊中目標(biāo)的概率是0.9,他連續(xù)射擊4,且各次射擊是否擊中目標(biāo)相互之間沒(méi)有影響,有下列結(jié)論:

①他第3次擊中目標(biāo)的概率是0.9;

②他恰好擊中目標(biāo)3次的概率是;

③他至少擊中目標(biāo)1次的概率是;

④他至多擊中目標(biāo)1次的概率是

其中正確結(jié)論的序號(hào)是(

A.①②③B.①③

C.①④D.①②

查看答案和解析>>

同步練習(xí)冊(cè)答案