【題目】已知函數(shù).

(Ⅰ)當(dāng)時(shí),求函數(shù)的最小值;

(Ⅱ)討論函數(shù)的零點(diǎn)個(gè)數(shù).

【答案】(I);(II)詳見解析.

【解析】

(Ⅰ)當(dāng)時(shí),,求得,得出函數(shù)的單調(diào)性,即可求解函數(shù)的極小值.

(Ⅱ)當(dāng),方程,則方程有兩個(gè)不相等的實(shí)數(shù)根,記為,,得函數(shù)的減區(qū)間為,增區(qū)間為,求得函數(shù)的最小值,沒有零點(diǎn);當(dāng)時(shí),函數(shù)僅有一個(gè)零點(diǎn)為;當(dāng)時(shí),得函數(shù)的增區(qū)間為,減區(qū)間為,求得,由此時(shí)函數(shù)有兩個(gè)零點(diǎn),即可得到答案.

解:(Ⅰ)當(dāng)時(shí),

,令可得.

故函數(shù)的增區(qū)間為,減區(qū)間為

故當(dāng)時(shí),函數(shù)的最小值為.

(Ⅱ)由

,方程,則方程有兩個(gè)不相等的實(shí)數(shù)根,記為,,

,,有,故函數(shù)的減區(qū)間為,增區(qū)間為,有

當(dāng)時(shí),,又函數(shù)單調(diào)遞減,

(1)當(dāng)時(shí),,此時(shí),函數(shù)沒有零點(diǎn);

(2)當(dāng)時(shí),函數(shù)僅有一個(gè)零點(diǎn)為

(3)當(dāng)時(shí),有

,有

,有,故函數(shù)的增區(qū)間為,減區(qū)間為

,可得不等式(當(dāng)且僅當(dāng)時(shí)取等號(hào))成立

故有當(dāng)時(shí), ,

則此時(shí)函數(shù)有兩個(gè)零點(diǎn).

由上知時(shí),函數(shù)有一個(gè)零點(diǎn);

當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn);

當(dāng)時(shí)函數(shù)沒有零點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的通項(xiàng)公式為.求所有的正整數(shù),使得數(shù)列的前項(xiàng)能分成兩部分,這兩部分的和相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】電腦每秒鐘以相同的概率輸出一個(gè)數(shù)字12.將輸出的前個(gè)數(shù)字之和被3整除的概率記為.證明:

(1);

(2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若數(shù)列滿足:對(duì)于,都有為常數(shù)),則稱數(shù)列是公差為隔項(xiàng)等差數(shù)列.

)若是公差為8隔項(xiàng)等差數(shù)列,求的前項(xiàng)之和;

)設(shè)數(shù)列滿足:,對(duì)于,都有

求證:數(shù)列隔項(xiàng)等差數(shù)列,并求其通項(xiàng)公式;

設(shè)數(shù)列的前項(xiàng)和為,試研究:是否存在實(shí)數(shù),使得成等比數(shù)列(?若存在,請(qǐng)求出的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓的右焦點(diǎn)為,點(diǎn)在橢圓上,過原點(diǎn)的直線與橢圓相交于兩點(diǎn),且.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè),,過點(diǎn)且斜率不為零的直線與橢圓相交于兩點(diǎn),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某科室安排甲、乙、丙、丁四人國慶節(jié)放假期間(共放假八天)的值班表.已知甲、乙各值班四天,甲不能在第一天值班且甲、乙不在同一天值班;丙需要值班三天,且不能連續(xù)值班;丁需要值班五天;規(guī)定每天必須兩人值班.則符合條件的不同方案共有( )種.

A. 400 B. 700 C. 840 D. 960

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)到直線的距離為.

(1)求拋物線的標(biāo)準(zhǔn)方程;

(2)設(shè)點(diǎn)是拋物線上的動(dòng)點(diǎn),若以點(diǎn)為圓心的圓在軸上截得的弦長均為4,求證:圓恒過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】陜西理工大學(xué)開展大學(xué)生社會(huì)實(shí)踐活動(dòng),用“10分制”隨機(jī)調(diào)查漢臺(tái)區(qū)某社區(qū)居民的幸福指數(shù),現(xiàn)從調(diào)查人群中隨機(jī)抽取16人,如圖所示的莖葉圖記錄了他們的幸福指數(shù)的得分以小數(shù)點(diǎn)的前一位數(shù)字為莖,小數(shù)點(diǎn)后的一位數(shù)字為葉

寫出這組數(shù)據(jù)的眾數(shù)和中位數(shù);

若幸福指數(shù)不低于9分,則稱該人的幸福指數(shù)為“極幸!保蝗粜腋V笖(shù)不高于8分,則稱該人的幸福指數(shù)為“不夠幸!現(xiàn)從這16人中幸福指數(shù)為“極幸!焙汀安粔蛐腋!钡娜酥腥我膺x取2人,求選出的兩人的幸福指數(shù)均為“極幸!钡母怕剩

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解甲、乙兩種離子在小鼠體內(nèi)的殘留程度,進(jìn)行如下試驗(yàn):將200只小鼠隨機(jī)分成兩組,每組100只,其中組小鼠給服甲離子溶液,組小鼠給服乙離子溶液.每只小鼠給服的溶液體積相同、摩爾濃度相同.經(jīng)過一段時(shí)間后用某種科學(xué)方法測(cè)算出殘留在小鼠體內(nèi)離子的百分比.根據(jù)試驗(yàn)數(shù)據(jù)分別得到如下直方圖:

為事件:“乙離子殘留在體內(nèi)的百分比不低于”,根據(jù)直方圖得到的估計(jì)值為.

(1)求乙離子殘留百分比直方圖中的值;

(2)分別估計(jì)甲、乙離子殘留百分比的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表).

查看答案和解析>>

同步練習(xí)冊(cè)答案