【題目】微信是騰訊公司推出的一種手機通訊軟件,它支持發(fā)送語音短信、視頻、圖片和文字,一經(jīng)推出便風(fēng)靡全國,甚至涌現(xiàn)出一批在微信的朋友圈內(nèi)銷售商品的人被稱為微商.為了調(diào)查每天微信用戶使用微信的時間,某經(jīng)銷化妝品的微商在一廣場隨機采訪男性、女性用戶各50名,其中每天玩微信超過6小時的用戶列為“微信控”,否則稱其為“非微信控”,調(diào)查結(jié)果如下:

1根據(jù)以上數(shù)據(jù),能否有60%的把握認為“微信控”與”性別“有關(guān)?

2現(xiàn)從調(diào)查的女性用戶中按分層抽樣的方法選出5人,從這5人中再隨機抽取3人贈送200元的護膚品套裝,求這3人中微信控”的人數(shù)為2的概率.

參考公式:,其中n=a+b+c+d.

參考數(shù)據(jù):

【答案】1 沒有60%的把握認為“微信控”與”性別“有關(guān);2

【解析】

試題分析:由列聯(lián)表的數(shù)據(jù)代入公式,與比較大小;

25人按3:2的比例抽取人數(shù),其中微信控的3人為,非微信控的2人為,通過列舉法列出所有3人組合的情況,即方法種數(shù),并計算其中含有中的2人的方法情況,相除即得結(jié)果.

試題解析:1由列聯(lián)表可得

.

所以沒有60%的把握認為“微信控”與”性別“有關(guān).

2記從2中抽取的5人中微信控的3人為,非微信控的2人為,從中隨機抽取3人,所有可能結(jié)果:,

,共10種;其中微信控的人數(shù)為2的結(jié)果有:

,共6種,

則所求概率為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】知函數(shù)偶函數(shù)

(1)值;

(2)若函數(shù),是否存在實數(shù)使得最小值為0,若存在,求出值;若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】微信是騰訊公司推出的一種手機通訊軟件,它支持發(fā)送語音短信、視頻、圖片和文字,一經(jīng)推出便風(fēng)靡全國,甚至涌現(xiàn)出一批在微信的朋友圈內(nèi)銷售商品的人被稱為微商.為了調(diào)查每天微信用戶使用微信的時間,某經(jīng)銷化妝品的微商在一廣場隨機采訪男性、女性用戶各50名,其中每天玩微信超過6小時的用戶列為“微信控”,否則稱其為“非微信控”,調(diào)查結(jié)果如下:

1根據(jù)以上數(shù)據(jù),能否有60%的把握認為“微信控”與”性別“有關(guān)?

2現(xiàn)從調(diào)查的女性用戶中按分層抽樣的方法選出5人贈送營養(yǎng)面膜1份,求所抽取5人中“微信控”和“非微信控”的人數(shù);

32中抽取的5人中再隨機抽取3人贈送200元的護膚品套裝,記這3人中“微信控”的人數(shù)為X,試求X的分布列與數(shù)學(xué)期望.

參考公式:,其中n=a+b+c+d.

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-1:幾何證明選講

如圖,圓O的直徑AB=10,P是AB延長線上一點,BP=2,割線PCD交圓O于點C,D,過點P作AP的垂線,交直線AC于點E,交直線AD于點F.

1當(dāng)時,求的度數(shù);

2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用反證法證明命題“三角形的內(nèi)角中最多只有一個內(nèi)角是鈍角”時,應(yīng)先假設(shè)(

A. 沒有一個內(nèi)角是鈍角 B. 有兩個內(nèi)角是鈍角

C. 有三個內(nèi)角是鈍角 D. 至少有兩個內(nèi)角是鈍角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某研究性學(xué)習(xí)小組,為了對白天平均氣溫與某奶茶店的某種飲料銷量之間的關(guān)系進行分析研究,他們分別記錄了2月11日至2月16日的白天平均氣溫x()與該奶茶店的這種飲料銷量y(杯),得到如下數(shù)據(jù):

日期

2月11日

2月12日

2月13日

2月14日

2月15日

2月16日

平均氣溫x(

10

11

13

12

8

6

飲料銷量y(杯)

22

25

29

26

16

12

該小組的研究方案:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選的2組數(shù)據(jù)進行檢驗.

)求選取的2組數(shù)據(jù)恰好是相鄰兩天的概率;

)若選取的是11日和16日的兩組數(shù)據(jù),請根據(jù)12日至15日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程x+,并判斷該小組所得線性回歸方程是否理想.(若由線性回歸方程得到的估計數(shù)據(jù)與所選的檢驗數(shù)據(jù)的誤差均不超過2杯,則認為該方程是理想的)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱中, ,的中點,是等腰三角形,的中點,上一點.

1平面,求

2平面將三棱柱分成兩個部分,求較小部分與較大部分的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】心理學(xué)家分析發(fā)現(xiàn)視覺和空間能力與性別有關(guān),某數(shù)學(xué)興趣小組為了驗證這個結(jié)論,從興趣小組中按分層抽樣的方法抽取50名同學(xué)(男30女20),給所有同學(xué)幾何題和代數(shù)題各一題,讓各位同學(xué)自由選擇一道題進行解答.選題情況如下表:(單位:人)

)能否據(jù)此判斷有97.5%的把握認為視覺和空間能力與性別有關(guān)?

)經(jīng)過多次測試后,甲每次解答一道幾何題所用的時間在57分鐘,乙每次解答一道幾何題所用的時間在68分鐘,現(xiàn)甲、乙各解同一道幾何題,求乙比甲先解答完的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為常數(shù)

1若曲數(shù)在點處的切線與直線垂直,求函數(shù)的單調(diào)遞減區(qū)間;

2若函數(shù)在區(qū)間[1,3]上的最小值為,求的值

查看答案和解析>>

同步練習(xí)冊答案