【題目】已知函數(shù)f0(x)= (x>0),設(shè)fn(x)為fn-1(x)的導(dǎo)數(shù),n∈N*.

(1)求2f1f2的值;

(2)證明:對任意的n∈N*,等式都成立.

【答案】(1);(2)詳見解析.

【解析】

(1)由于求兩個(gè)函數(shù)的相除的導(dǎo)數(shù)比較麻煩,根據(jù)條件和結(jié)論先將原函數(shù)化為:xf0(x)=sinx,然后兩邊求導(dǎo)后根據(jù)條件兩邊再求導(dǎo)得:2f1(x)+xf2(x)=﹣sinx,把x= 代入式子求值;

(2)由(1)得,f0(x)+xf1(x)=cosx2f1(x)+xf2(x)=﹣sinx,利用相同的方法再對所得的式子兩邊再求導(dǎo),并利用誘導(dǎo)公式對所得式子進(jìn)行化簡、歸納,再進(jìn)行猜想得到等式,用數(shù)學(xué)歸納法進(jìn)行證明等式成立,主要利用假設(shè)的條件、誘導(dǎo)公式、求導(dǎo)公式以及題意進(jìn)行證明,最后再把x=代入所給的式子求解驗(yàn)證.

解: (1)由已知,得f1(x)=f0(x)=,

于是f2(x)=f1′(x)==

所以,

=-1.

(2)證明:由已知得,xf0(x)=sin x,等式兩邊分別對x求導(dǎo),得f0(x)+xf0′(x)=cos x,

f0(x)+xf1(x)=cos x.

類似可得

2f1(x)+xf2(x)=-sin x=sin(x+π),

3f2(x)+xf3(x)=-cos x,

4f3(x)+xf4(x)=sin x=sin(x+2π).

下面用數(shù)學(xué)歸納法證明等式nfn-1(x)+xfn(x)=對所有的n∈N*都成立.

(i)當(dāng)n=1時(shí),由上可知等式成立.

(ii)假設(shè)當(dāng)nk時(shí)等式成立,即kfk-1(x)+xfk(x)=.

因?yàn)閇kfk-1(x)+xfk(x)]′=kfk-1′(x)+fk(x)+xfk′(x)=(k+1)fk(x)+xfk+1(x),

,

所以(k+1)fk(x)+xfk+1(x)=,

因此當(dāng)nk+1時(shí),等式也成立.

綜合(i)(ii)可知,等式nfn-1(x)+xfn(x)=對所有的n∈N*都成立.

x ,可得

所以

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校健康社團(tuán)為調(diào)查本校大學(xué)生每周運(yùn)動(dòng)的時(shí)長,隨機(jī)選取了80名學(xué)生,調(diào)查他們每周運(yùn)動(dòng)的總時(shí)長(單位:小時(shí)),按照6組進(jìn)行統(tǒng)計(jì),得到男生、女生每周運(yùn)動(dòng)的時(shí)長的統(tǒng)計(jì)如下(表12),規(guī)定每周運(yùn)動(dòng)15小時(shí)以上(含15小時(shí))的稱為“運(yùn)動(dòng)合格者”,其中每周運(yùn)動(dòng)25小時(shí)以上(含25小時(shí))的稱為“運(yùn)動(dòng)達(dá)人”.

1:男生

時(shí)長

人數(shù)

2

8

16

8

4

2

2:女生

時(shí)長

人數(shù)

0

4

12

12

8

4

1)從每周運(yùn)動(dòng)時(shí)長不小于20小時(shí)的男生中隨機(jī)選取2人,求選到“運(yùn)動(dòng)達(dá)人”的概率;

2)根據(jù)題目條件,完成下面列聯(lián)表,并判斷能否有99%的把握認(rèn)為本校大學(xué)生是否為“運(yùn)動(dòng)合格者”與性別有關(guān).

每周運(yùn)動(dòng)的時(shí)長小于15小時(shí)

每周運(yùn)動(dòng)的時(shí)長不小于15小時(shí)

總計(jì)

男生

女生

總計(jì)

參考公式:,其中.

參考數(shù)據(jù):

0.40

0.25

0.10

0.010

0.708

1.323

2.706

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左頂點(diǎn) 與上頂點(diǎn)的距離為

(Ⅰ)求橢圓的方程和焦點(diǎn)的坐標(biāo);

(Ⅱ)點(diǎn)在橢圓上,線段的垂直平分線與軸相交于點(diǎn),若為等邊三角形,求點(diǎn)的橫坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】十九大指出中國的電動(dòng)汽車革命早已展開,通過以新能源汽車替代汽/柴油車,中國正在大力實(shí)施一項(xiàng)將重塑全球汽車行業(yè)的計(jì)劃.2018年某企業(yè)計(jì)劃引進(jìn)新能源汽車生產(chǎn)設(shè)備,通過市場分析,全年需投入固定成本2500萬元,每生產(chǎn)x(百輛),需另投入成本萬元,且.由市場調(diào)研知,每輛車售價(jià)5萬元,且全年內(nèi)生產(chǎn)的車輛當(dāng)年能全部銷售完.

1)求出2018年的利潤Lx)(萬元)關(guān)于年產(chǎn)量x(百輛)的函數(shù)關(guān)系式;(利潤=銷售額-成本)

22018年產(chǎn)量為多少百輛時(shí),企業(yè)所獲利潤最大?并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某次數(shù)學(xué)考試中,抽查了1000名學(xué)生的成績,得到頻率分布直方圖如圖所示,規(guī)定85分及其以上為優(yōu)秀.

1)下表是這次抽查成績的頻數(shù)分布表,試求正整數(shù)、的值;

區(qū)間

[7580

[80,85

[8590

[90,95

[95,100]

人數(shù)

50

a

350

300

b

2)現(xiàn)在要用分層抽樣的方法從這1000人中抽取40人的成績進(jìn)行分析,求抽取成績?yōu)閮?yōu)秀的學(xué)生人數(shù);

3)在根據(jù)(2)抽取的40名學(xué)生中,要隨機(jī)選取2名學(xué)生參加座談會(huì),記其中成績?yōu)閮?yōu)秀的人數(shù)為X,求X的分布列與數(shù)學(xué)期望(即均值).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某少兒游泳隊(duì)需對隊(duì)員進(jìn)行限時(shí)的仰臥起坐達(dá)標(biāo)測試.已知隊(duì)員的測試分?jǐn)?shù)與仰臥起坐

個(gè)數(shù)之間的關(guān)系如下:;測試規(guī)則:每位隊(duì)員最多進(jìn)行三組測試,每組限時(shí)1分鐘,當(dāng)一組測完,測試成績達(dá)到60分或以上時(shí),就以此組測試成績作為該隊(duì)員的成績,無需再進(jìn)行后續(xù)的測試,最多進(jìn)行三組;根據(jù)以往的訓(xùn)練統(tǒng)計(jì),隊(duì)員“喵兒”在一分鐘內(nèi)限時(shí)測試的頻率分布直方圖如下:

(1)計(jì)算值;

(2)以此樣本的頻率作為概率,求

①在本次達(dá)標(biāo)測試中,“喵兒”得分等于的概率;

②“喵兒”在本次達(dá)標(biāo)測試中可能得分的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若函數(shù)有相同的極值點(diǎn)(極值點(diǎn)是指函數(shù)取極值時(shí)對應(yīng)的自變量的值),求的值;

2)記.

①若在區(qū)間為自然對數(shù)底數(shù))上至少存在一點(diǎn),使得成立,求的取值范圍;

②若函數(shù)圖象存在兩條經(jīng)過原點(diǎn)的切線,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某幾何體的三視圖如圖所示,若該幾何體的外接球體積為,則h=( 。

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的一個(gè)側(cè)面為等邊三角形,且平面平面,四邊形是平行四邊形,,.

1)求證:;

2)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案