選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xoy中,直線l的參數(shù)方程為:
x=1+tcosα
y=2+tsinα
(t為參數(shù)).以原點(diǎn)O為極點(diǎn),x軸的
正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為:ρ=6sinθ.
(Ⅰ)求曲線C的直角坐標(biāo)方程;
(Ⅱ)若曲線C與直線l交于A,B兩點(diǎn),點(diǎn)P(1,2),求|PA|+|PB|的最小值.
考點(diǎn):簡單曲線的極坐標(biāo)方程
專題:坐標(biāo)系和參數(shù)方程
分析:(1)曲線C的極坐標(biāo)方程根據(jù)x=ρcosθ,y=ρsinθ化為直角坐標(biāo)方程.
(2)把直線l的參數(shù)方程消去參數(shù)化為普通方程可得直線l經(jīng)過定點(diǎn)P(1,2),可得|PA|+|PB|=|AB|,本題即求弦長|AB|的最小值.故當(dāng)AB⊥CP時,弦長|AB|最小,再利用弦長公式求得|PA|+|PB|的最小值.
解答: 解:(1)曲線C的極坐標(biāo)方程為:ρ=6sinθ,即 ρ2=6ρsinθ,化為直角坐標(biāo)方程為x2+(y-3)2=9.
(2)把直線l的參數(shù)方程為:
x=1+tcosα
y=2+tsinα
(t為參數(shù))消去參數(shù),化為普通方程為 y-2=tanα(x-1),
顯然直線l經(jīng)過定點(diǎn)P(1,2),再由曲線C與直線l交于A,B兩點(diǎn),
可得|PA|+|PB|=|AB|,故本題即求弦長|AB|的最小值.
故當(dāng)AB⊥CP時,弦長|AB|最小,|CP|=
(1-0)2+(2-3)2
=
2

此時,|PA|+|PB|的最小值|AB|=2
r2-CP2
=2
9-2
=2
7
點(diǎn)評:本題主要考查把參數(shù)方程、極坐標(biāo)化為直角坐標(biāo)方程的方法,點(diǎn)到直線的距離公式、弦長公式的應(yīng)用,直線和圓的位置關(guān)系,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y滿足約束條件
x2+y2≤4
x-y+2≥0
y≥0
,則目標(biāo)函數(shù)z=2x+y的最大值是(  )
A、
5
B、2
5
C、
3
D、2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的前n項(xiàng)和為Sn,已知對任意的n∈N+,點(diǎn)(n,Sn)均在函數(shù)y=bx-1(b>0且b≠1,b均為常數(shù))的圖象上.
(1)求證:{an}是等比數(shù)列;
(2)當(dāng)b=2時,記bn=
n+1
4an
(n∈N+),證明:數(shù)列{bn}的前n項(xiàng)和Tn
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log3
1-x
1+x

(Ⅰ)求函數(shù)f(x)的定義域;
(Ⅱ)判斷函數(shù)f(x)的奇偶性;
(Ⅲ)當(dāng)x∈[-
1
2
,
1
2
]時,函數(shù)g(x)=f(x),求函數(shù)g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=mlnx-
1
2
x(m∈R),g(x)=2cos2x+sinx+a.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
〔Ⅱ)當(dāng)m=
1
2
時,對于任意x1∈[
1
e
,e],總存在x2∈[0,
π
2
],使得f(x1)≤g(x2)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡:
(1)lg 
3
7
+lg70-lg3-
lg23-lg9+1

(2)(-
27
8
 -
2
3
+(0.002) -
1
2
-10(
5
-2)-1+(
2
-
3
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=
1
2
,且an+1=
an
3an+1
(n∈N+).
(1)證明數(shù)列{
1
an
}
是等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=anan+1(n∈N+),數(shù)列{bn}的前n項(xiàng)和記為Tn,證明:Tn
1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(
π
4
-x)=
1
3
,則sin2x的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若P為f(x)=ex上任意一點(diǎn),則點(diǎn)P到直線x-y-5=0的距離的最小值為
 

查看答案和解析>>

同步練習(xí)冊答案