已知函數(shù)f(x)=e2x+(1-2t)ex+t2,求證:當(dāng)x≥0時,f(x)+cosx≥x+2.
考點:利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:令ex=a,a≥1,f(x)=a2+(1-2t)a+t2,從而(a-t)2≥x+2-a-cosx,由(a-t)2≥0,只要證t(x)=x+2-ex-cosx≤0即可,由此能證明當(dāng)x≥0時,f(x)+cosx≥x+2.
解答: 證明:令ex=a,∵x≥0,∴a≥1,
∴f(x)=a2+(1-2t)a+t2,
∴a2+(1-2t)a+t2+cosx≥x+2,
∴(a-t)2+cosx+a≥x+2,
∴(a-t)2≥x+2-a-cosx,
∵(a-t)2≥0,
∴只要證t(x)=x+2-ex-cosx≤0即可,
∵t′(x)=-ex+sinx+1,
當(dāng)x≥0時,t′(x)≤0,∴t(x)在[0,+∞)是減函數(shù),
∴t(x)max=t(0)=0∴t(x)≤0,
∴當(dāng)x≥0時,f(x)+cosx≥x+2.
點評:本題考查不等式的證明,解題時要認(rèn)真審題,注意導(dǎo)數(shù)性質(zhì)的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若(x
x
-
1
x
n(n∈N+)的展開式中含有常數(shù)項,則n的最小值為( 。
A、4B、5C、6D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,∠A=60°,a=5,b=4,則此三角形解的情況是( 。
A、一個解B、兩個解
C、無解D、不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知A(1,0),B(0,1),點C在第一象限內(nèi),∠AOC=
π
6
,且|OC|=2,若
OC
OA
OB
,則λ,μ的值是( 。
A、
3
,1
B、1,
3
C、
3
3
,1
D、1,
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,其焦距為2.
(1)求橢圓的方程;
(2)設(shè)A、B、M是橢圓上的三點(異于橢圓頂點),且存在銳角θ,使
OM
=cosθ•
OA
+sinθ•
OB

①試求直線OA與OB的斜率的乘積;
②試求|
OA
|2+|
OB
|2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的首項a1=2,前n項和為Sn,且-a2,Sn,2an+1成等差數(shù)列,求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的頂點與雙曲線
y2
4
-
x2
12
=1的焦點重合,它們的離心率之和為
13
5
,若橢圓的焦點在y軸上.
(1)求雙曲線的離心率,并寫出其漸近線方程;
(2)求橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)點F(1,0),動圓P經(jīng)過點F且和直線x=-1相切.記動圓的圓心P的軌跡為曲線W.
(Ⅰ)求曲線W的方程;
(Ⅱ)過點M(0,2)的直線l與曲線W交于A、B兩點,且直線l與x軸交于點C,設(shè)
MA
AC
,
MB
BC
,求證:α+β為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

巳知橢圓C:
x2
a2
+
y2
b2
=1與雙曲線
x2
2
-y2=1有公共焦點,且離心率為
3
2
.A、B分別是橢圓C的左頂點和右頂點.點S是橢圓C上位于x軸上方的動點.直線AS,BS分別與直線l:x=
10
3
分別交于M,N兩點.
(1)求橢圓C的方程;
(2)試判斷以SM為直徑的圓是否過點B,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案