設(shè)函數(shù)
(1)記的導(dǎo)函數(shù),若不等式 在上有解,求實數(shù)的取值范圍;
(2)若,對任意的,不等式恒成立,求m(m∈Z,m1)的值.

(1);(2)

解析試題分析:(1)首先由已知條件將不等式轉(zhuǎn)化為它在上有解等價于,再利用導(dǎo)數(shù)求函數(shù)的最小值;(2)由已知時,對任意的,不等式恒成立,等價變形為上恒成立,為此只需構(gòu)造函數(shù),只要證明函數(shù)上單調(diào)遞增即可.
試題解析:(1)不等式即為化簡得,因而設(shè)
當(dāng)上恒成立.
由不等式有解,可得知即實數(shù)的取值范圍是
(2)當(dāng).由恒成立,得恒成立. 設(shè)
由題意知,故當(dāng)時函數(shù)單調(diào)遞增,
恒成立,即恒成立,因此,記,得
∵函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,∴函數(shù)時取得極大值,并且這個極大值就是函數(shù)的最大值.由此可得,故,結(jié)合已知條件,,可得
考點(diǎn):1.導(dǎo)數(shù)的應(yīng)用;2.恒成立問題中的參數(shù)取值范圍問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

己知函數(shù) .
(I)求的極大值和極小值;
(II)當(dāng)時,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)當(dāng)時,求曲線處的切線方程;
(Ⅱ)討論函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)當(dāng)時,求曲線在點(diǎn)處的切線方程;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)若函數(shù)沒有零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,函數(shù)
(1)當(dāng)時,寫出函數(shù)的單調(diào)遞增區(qū)間;
(2)當(dāng)時,求函數(shù)在區(qū)間[1,2]上的最小值;
(3)設(shè),函數(shù)在(m,n)上既有最大值又有最小值,請分別求出m,n的取值范圍(用a表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),其中是自然對數(shù)的底數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間和極值;
(Ⅱ)若函數(shù)對任意滿足,求證:當(dāng)時,
(Ⅲ)若,且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)。
(Ⅰ)若,求函數(shù)的單調(diào)區(qū)間并比較的大小關(guān)系
(Ⅱ)若函數(shù)的圖象在點(diǎn)處的切線的傾斜角為,對于任意的,函數(shù)在區(qū)間上總不是單調(diào)函數(shù),求的取值范圍;
(Ⅲ)求證:。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù),其中.
(1)若處取得極值,求常數(shù)的值;
(2)設(shè)集合,若元素中有唯一的整數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)當(dāng)時,試討論函數(shù)的單調(diào)性;
(2)證明:對任意的 ,有.

查看答案和解析>>

同步練習(xí)冊答案