某商人將進(jìn)貨單位為8元的商品按每件10元售出時(shí),每天可銷售100件,現(xiàn)在它采用提高銷售價(jià),減少進(jìn)貨量的辦法增加利潤.已知這種商品漲1元,其銷售數(shù)就減少10個(gè).問他將售出價(jià)定為
 
元時(shí),利潤獲得最大.
考點(diǎn):根據(jù)實(shí)際問題選擇函數(shù)類型
專題:應(yīng)用題,函數(shù)的性質(zhì)及應(yīng)用
分析:設(shè)出漲價(jià),得到出售價(jià)及每天的銷售量,由出售價(jià)減去進(jìn)價(jià)乘以銷售量得到一天的利潤,利用配方法求最大值.
解答: 解:設(shè)漲價(jià)x元(0<x<10),即售出價(jià)為(10+x)元,利潤為y元,依題意得:
y=(10+x-8)(100-10x)=(2+x)(100-10x)
=-10x2+80x+200=-10(x-4)2+360.
∴x=4時(shí),ymax=360.
故當(dāng)漲價(jià)x為4元,即售價(jià)為10+4=14元時(shí)每天所賺的利潤最大,最大利潤為360元.
故答案為:14.
點(diǎn)評:本題考查了根據(jù)實(shí)際問題選擇函數(shù)模型,考查了簡單的數(shù)學(xué)建模思想方法,關(guān)鍵是對題意的理解,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在四棱錐P-ABCD中,平面PAD⊥平面ABCD,AB∥CD,在銳角△PAD中PA=PD,并且BD=2AD=8,AB=2DC=4
5

(1)點(diǎn)M是PC上的一點(diǎn),證明:平面MBD⊥平面PAD;
(2)若PA與平面PBD成角60°,當(dāng)面MBD⊥平面ABCD時(shí),求點(diǎn)M到平面ABCD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示的程序框圖運(yùn)行的結(jié)果是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(幾何證明選講選做題) 如圖,∠ACB=90°,AC是圓O的切線,切點(diǎn)為E,割線ADB過圓心O,若AE=
3
,AD=1
,則BC的長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線x2=2y的準(zhǔn)線方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,
AB
=(cos18°,cos72°)
BC
=(2cos63°,2cos27°)
,則∠B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知扇形的圓心角為60°,所在圓的半徑為10cm,則扇形的面積是
 
cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖程序框圖,輸入k=8,則輸出S的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)P在橢圓
x2
4
+
y2
3
=1上運(yùn)動,Q、R分別在兩圓(x+1)2+y2=1和(x-1)2+y2=1上運(yùn)動,則|PQ|+|PR|的最小值為
 

查看答案和解析>>

同步練習(xí)冊答案