【題目】如圖,矩形中,的中點,現(xiàn)將折起,使得平面及平面都與平面垂直.

1)求證:平面;

2)求二面角的正弦值.

【答案】1)見解析(2

【解析】

1)分別取的中點,由線面垂直性質(zhì)定理可得,又三角形全等,所以,四邊形為平行四邊形,根據(jù)線面平行的判定定理,即得證;

2為原點,,,正半軸,過作平面的垂線為軸,建立空間直角坐標系,利用向量法即可求出二面角的正弦值.

1)如圖所示:

分別取,的中點,連結(jié),,,

,

平面與平面都與平面垂直,

平面,平面

由線面垂直的性質(zhì)定理得,

,四邊形是平行四邊形,,

平面,平面

2)如圖,為原點,,正半軸,過作平面的垂線為軸,建立空間直角坐標系,,,平面的法向量,

設(shè)平面的法向量

,取,得

設(shè)二面角的平面角為,由圖知為鈍角,

∴二面角的余弦值為,則正弦值為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,已知圓的參數(shù)方程是為參數(shù)).為極點,軸的非負半軸為極軸建立極坐標系,直線的極坐標方程是,射線與圓的交點為兩點,與直線的交點為.

1)求圓的極坐標方程;

2)求線段的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】植物園擬建一個多邊形苗圃,苗圃的一邊緊靠著長度大于30m的圍墻.現(xiàn)有兩種方案:

方案多邊形為直角三角形),如圖1所示,其中;

方案多邊形為等腰梯形),如圖2所示,其中

請你分別求出兩種方案中苗圃的最大面積,并從中確定使苗圃面積最大的方案.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2020年全球爆發(fā)新冠肺炎,人感染了新冠肺炎病毒后常見的呼吸道癥狀有:發(fā)熱、咳嗽、氣促和呼吸困難等,嚴重時會危及生命.隨著疫情的發(fā)展,自202025日起,武漢大面積的爆發(fā)新冠肺炎,政府為了及時收治輕癥感染的群眾,逐步建立起了14家方艙醫(yī)院,其中武漢體育中心方艙醫(yī)院從212日開艙至38日閉倉,累計收治輕癥患者1056人.據(jù)部分統(tǒng)計該方艙醫(yī)院從226日至32日輕癥患者治愈出倉人數(shù)的頻數(shù)表與散點圖如下:

日期

2.26

2.27

2.28

2.29

3.1

3.2

序號

1

2

3

4

5

6

出倉人數(shù)

3

8

17

31

68

168

根據(jù)散點圖和表中數(shù)據(jù),某研究人員對出倉人數(shù)與日期序號進行了擬合分析.從散點圖觀察可得,研究人員分別用兩種函數(shù)①分析其擬合效果.其相關(guān)指數(shù)可以判斷擬合效果,R2越大擬合效果越好.已知的相關(guān)指數(shù)為

1)試根據(jù)相關(guān)指數(shù)判斷.上述兩類函數(shù),哪一類函數(shù)的擬合效果更好?(注:相關(guān)系數(shù)與相關(guān)指數(shù)R2滿足,參考數(shù)據(jù)表中

2根據(jù)(1)中結(jié)論,求擬合效果更好的函數(shù)解析式;(結(jié)果保留小數(shù)點后三位)

33日實際總出倉人數(shù)為216人,按①中的回歸模型計算,差距有多少人?

(附:對于一組數(shù)據(jù),其回歸直線為

相關(guān)系數(shù)

參考數(shù)據(jù):

3.5

49.17

15.17

3.13

894.83

19666.83

10.55

13.56

3957083

,,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱-的底面是邊長為2的等邊三角形,底面,點分別是棱,上的點,且

(Ⅰ)證明:平面平面;

(II)若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,平面,邊上一點,,.

(1)證明:平面平面.

(2)若,試問:是否與平面平行?若平行,求三棱錐的體積;若不平行,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列是等差數(shù)列,數(shù)列是等比數(shù)列,且,的前n項和為.若對任意的恒成立.

1)求數(shù)列,的通項公式;

2)若數(shù)列滿足問:是否存在正整數(shù),使得,若存在求出的值,若不存在,說明理由;

3)若存在各項均為正整數(shù)公差為的無窮等差數(shù)列,滿足,且存在正整數(shù),使得成等比數(shù)列,求的所有可能的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】垃圾分類,是指按一定規(guī)定或標準將垃圾分類儲存、分類投放和分類搬運,從而轉(zhuǎn)變成公共資源的一系列活動的總稱.分類的目的是提高垃圾的資源價值和經(jīng)濟價值,力爭物盡其用.2019625日,生活垃圾分類制度入法.到2020年底,先行先試的46個重點城市,要基本建成垃圾分類處理系統(tǒng);其他地級城市實現(xiàn)公共機構(gòu)生活垃圾分類全覆蓋.某機構(gòu)欲組建一個有關(guān)垃圾分類相關(guān)事宜的項目組,對各個地區(qū)垃圾分類的處理模式進行相關(guān)報道.該機構(gòu)從600名員工中進行篩選,篩選方法:每位員工測試,三項工作,3項測試中至少2項測試不合格的員工,將被認定為暫定,有且只有一項測試不合格的員工將再測試兩項,如果這兩項中有1項以上(含1項)測試不合格,將也被認定為暫定,每位員工測試,三項工作相互獨立,每一項測試不合格的概率均為

1)記某位員工被認定為暫定的概率為,求;

2)每位員工不需要重新測試的費用為90元,需要重新測試的總費用為150元,除測試費用外,其他費用總計為1萬元,若該機構(gòu)的預算為8萬元,且該600名員工全部參與測試,問上述方案是否會超過預算?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=xex-alnx(無理數(shù)e=2.718…).

(1)若f(x)在(0,1)單調(diào)遞減,求實數(shù)a的取值范圍;

(2)當a=-1時,設(shè)g(x)=x(f(x)-xex)-x3+x2-b,若函數(shù)g(x)存在零點,求實數(shù)b的最大值.

查看答案和解析>>

同步練習冊答案