為了研究玉米品種對(duì)產(chǎn)量的影響,某農(nóng)科院對(duì)一塊試驗(yàn)田種植的一批玉米共10000株的生長(zhǎng)情況進(jìn)行研究,現(xiàn)采用分層抽樣方法抽取50株為樣本,統(tǒng)計(jì)結(jié)果如表:
高莖矮莖合計(jì)
圓粒111930
皺粒13720
合計(jì)242650
(1)現(xiàn)采用分層抽樣方法,從這個(gè)樣本中取出10株玉米,再?gòu)倪@10株玉米中隨機(jī)選出3株,求選到的3株之中既有圓粒玉米又有皺粒玉米的概率;
(2)根據(jù)對(duì)玉米生長(zhǎng)情況作出的統(tǒng)計(jì),是否能在犯錯(cuò)誤的概率不超過(guò)0.050的前提下認(rèn)為玉米的圓粒與玉米的高莖有關(guān)?(下面的臨界值表和公式可供參考):
P(K2≥k)0.150.100.0500.0250.0100.001
k2.0722.7063.8415.0246.63510.828
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d為樣本容量.
考點(diǎn):獨(dú)立性檢驗(yàn)的應(yīng)用
專(zhuān)題:計(jì)算題,概率與統(tǒng)計(jì)
分析:(1)現(xiàn)采用分層抽樣的方法,從樣本中取出的10株玉米中圓粒的有6株,皺粒的有4株,故可求從中再次選出3株時(shí),既有圓粒又有皺粒的概率;
(2)代入公式計(jì)算k的值,和臨界值表比對(duì)后即可得到答案.
解答: 解:(1)現(xiàn)采用分層抽樣的方法,從樣本中取出的10株玉米中圓粒的有6株,皺粒的有4株,所以從中再次選出3株時(shí),既有圓粒又有皺粒的概率為P=
C
1
6
C
2
4
+
C
2
6
C
1
4
C
3
10
=
4
5
.…(6分)
(2)根據(jù)已知列聯(lián)表:K2=
50×(11×7-13×19)2
30×20×24×26
≈3.860>3.841,
又P(K2≥3.841)=0.050,
因此能在犯錯(cuò)誤的概率不超過(guò)0.050的前提下認(rèn)為玉米的圓粒與玉米的高莖有關(guān).…(12分)
點(diǎn)評(píng):本題是一個(gè)獨(dú)立性檢驗(yàn),我們可以利用臨界值的大小來(lái)決定是否拒絕原來(lái)的統(tǒng)計(jì)假設(shè),若值較大就拒絕假設(shè),即拒絕兩個(gè)事件無(wú)關(guān).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

偶函數(shù)f(x)滿足f(x-1)=f(x+1),且在x∈[0,1]時(shí),f(x)=x2,則關(guān)于x的方程f(x)=(
1
10
)
|x|
在[-2,3]上的根的個(gè)數(shù)是(  )
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a、b、c分別是△ABC的三個(gè)內(nèi)角A、B、C所對(duì)的邊;
(1)若△ABC面積S△ABC=
3
2
,c=2,A=60°,求a、b的值;
(2)若sinA=2cosBsinC試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知?jiǎng)訄A過(guò)定點(diǎn)P(2,0),且在y軸上截得弦長(zhǎng)為4.
(1)求動(dòng)圓圓心的軌跡Q的方程;
(2)已知點(diǎn)E(m,0)為一個(gè)定點(diǎn),過(guò)E作斜率分別為k1、k2的兩條直線交軌跡Q于點(diǎn)A、B、C、D四點(diǎn),且M、N分別是線段AB、CD的中點(diǎn),若k1+k2=1,求證:直線MN過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓C1和直線C2的極坐標(biāo)方程分別為ρ=4cosθ,ρ=
4b
bcosθ+4sinθ
(b∈R).
(1)求圓C1和直線C2的直角坐標(biāo)方程,并求直線C2被圓C1所截的弦長(zhǎng);
(2)過(guò)原點(diǎn)O作直線C2的垂線,垂足為點(diǎn)A,求線段OA的中點(diǎn)M的軌跡的參數(shù)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=sinx,x∈[
π
4
,π]的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直三棱柱ABC-A′B′C′的各頂點(diǎn)都在同一球面,AB=2,AC=AA′=3,BC=4,求該球的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=x3-x2+ax
(1)a=-1,求f(x)在[0,2]的值域;   
(2)f(x)在R上恒增,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若(2x+i)i=-1+2i(x∈R,i為虛數(shù)單位),則x=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案