【題目】我們把由半橢圓與半橢圓合成的曲線稱作“果圓”,其中。如圖1,點(diǎn)是相應(yīng)橢圓的焦點(diǎn),和分別是“果圓”與軸的交點(diǎn),且是邊長(zhǎng)為2的等邊三角形。
(1)求“果圓”的方程。
(2)連接“果圓”上任意兩點(diǎn)的線段稱為“果圓”的弦,試研究:是否存在實(shí)數(shù),使斜率為的“果圓”平行弦的中點(diǎn)軌跡總是落在某個(gè)橢圓上?若存在,求出所有可能的值;若不存在,說(shuō)明理由。
【答案】(1);(2)見解析
【解析】
(1)因?yàn)?/span>,
所以
于是,所求“果圓”方程為
(2)記平行弦的斜率為.
當(dāng)時(shí),直線與半橢圓的交點(diǎn)是,與半橢圓的交點(diǎn)是.
所以,的中點(diǎn)滿足得.
所以當(dāng)時(shí),“果圓”平行弦的中點(diǎn)軌跡總是落在某個(gè)橢圓上.
當(dāng)時(shí),以為斜率過(guò)的直線與半橢圓的交點(diǎn)是, 所以線段中點(diǎn)的坐標(biāo)為.
由此,在直線右側(cè),以為斜率的平行弦的中點(diǎn)軌跡在直線上,即不在某一橢圓上
當(dāng)時(shí),可類似討論得到平行弦中點(diǎn)軌跡不都在某一橢圓上.
綜上,當(dāng)且僅當(dāng)時(shí),“果圓”平行弦的中點(diǎn)軌跡總是落在某個(gè)橢圓上.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其最小正周期為 .
(1)求 的表達(dá)式;
(2)將函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的倍(縱坐標(biāo)不變),得到函數(shù) 的圖象,若關(guān)于 的方程 在區(qū)間 上有解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給定函數(shù)①;②;③;④,其中在區(qū)間上單調(diào)遞減的函數(shù)序號(hào)是( )
A.①②B.②③C.③④D.①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,的內(nèi)切圓于邊、、分別切于點(diǎn)、、,、、、的中點(diǎn)分別為、、、,與交于點(diǎn)。證明:的外接圓與的內(nèi)切圓相切。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校100名學(xué)生期中考試語(yǔ)文成績(jī)的頻率分布直方圖如圖所示,其中成績(jī)分組區(qū)間是:[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求圖中的值;
(2)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生語(yǔ)文成績(jī)的平均分,眾數(shù),中位數(shù);
(3)若這100名學(xué)生語(yǔ)文成績(jī)某些分?jǐn)?shù)段的人數(shù)()與數(shù)學(xué)成績(jī)相應(yīng)分?jǐn)?shù)段的人數(shù)()之比如下表所示,求數(shù)學(xué)成績(jī)?cè)赱50,90)之外的人數(shù).
分?jǐn)?shù)段 | [50,60) | [60,70) | [70,80) | [80,90) |
1:1 | 2:1 | 3:4 | 4:5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某科技公司新研制生產(chǎn)一種特殊疫苗,為確保疫苗質(zhì)量,定期進(jìn)行質(zhì)量檢驗(yàn).某次檢驗(yàn)中,從產(chǎn)品中隨機(jī)抽取100件作為樣本,測(cè)量產(chǎn)品質(zhì)量體系中某項(xiàng)指標(biāo)值,根據(jù)測(cè)量結(jié)果得到如下頻率分布直方圖:
(1)求頻率分布直方圖中的值;
(2)技術(shù)分析人員認(rèn)為,本次測(cè)量的該產(chǎn)品的質(zhì)量指標(biāo)值X服從正態(tài)分布,若同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的中間值代替,計(jì)算,并計(jì)算測(cè)量數(shù)據(jù)落在(187.8,212.2)內(nèi)的概率;
(3)設(shè)生產(chǎn)成本為y元,質(zhì)量指標(biāo)值為,生產(chǎn)成本與質(zhì)量指標(biāo)值之間滿足函數(shù)關(guān)系假設(shè)同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的中間值代替,試計(jì)算生產(chǎn)該疫苗的平均成本.
參考數(shù)據(jù):,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[2019·開封一模]已知數(shù)列中,,,利用下面程序框圖計(jì)算該數(shù)列的項(xiàng)時(shí),若輸出的是2,則判斷框內(nèi)的條件不可能是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了調(diào)查某大學(xué)學(xué)生在某天上網(wǎng)的時(shí)間,隨機(jī)對(duì)100名男生和100名女生進(jìn)行了不記名的問(wèn)卷調(diào)查. 得到如下的統(tǒng)計(jì)結(jié)果.
表1:男生上網(wǎng)時(shí)間與頻數(shù)分布表:
上網(wǎng)時(shí)間(分鐘) | |||||
人數(shù) | 10 | 20 | 40 | 20 | 10 |
表2:女生上網(wǎng)時(shí)間與頻數(shù)分布表:
上網(wǎng)時(shí)間(分鐘) | |||||
人數(shù) | 5 | 25 | 30 | 25 | 15 |
完成下面的2×2列聯(lián)表,并回答能否有90%的把握認(rèn)為“大學(xué)生上網(wǎng)時(shí)間與性別有關(guān)”?
附:,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2sin(3ωx),其中ω>0.
(1)若f(x+θ)是最小周期為2π的偶函數(shù),求ω和θ的值;
(2)若f(x)在(0,]上是增函數(shù),求ω的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com