設(shè)f(x)是定義在[-6,6]上的偶函數(shù),且f(4)>f(1),則下列各式一定成立的是(  )
A、f(0)<f(6)
B、f(4)>f(3)
C、f(2)>f(0)
D、f(-1)<f(4)
考點(diǎn):函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由于f(x)是偶函數(shù),所以f(-1)=f(1),結(jié)合f(-1)>f(4),即可判斷.
解答: 解:∵f(x)是偶函數(shù),
∴f(-1)=f(1),
又f(4)>f(1),
∴f(4)>f(-1),即f(-1)<f(4),
故選D.
點(diǎn)評(píng):本題考查函數(shù)奇偶性的性質(zhì),關(guān)鍵在于準(zhǔn)確理解題意,易錯(cuò)點(diǎn)在于題目中沒(méi)有給出函數(shù)的單調(diào)性質(zhì),由f(4)>f(1)錯(cuò)誤的認(rèn)為f(x)在(0,6)上單調(diào)遞增,從而出錯(cuò).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,若
a
cos
A
2
=
b
cos
B
2
=
c
cos
C
2
,則△ABC的形狀是(  )
A、直角三角形
B、等腰非等邊三角形
C、等邊三角形
D、等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式:①a2+2>2a;②a2+b2≥2(a-b-1);③a2+b2≥ab恒成立的個(gè)數(shù)是( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x||x|<3},B={x|y=lg(x-1)},則集合A∩B為( 。
A、[0,3)
B、[1,3)
C、(1,3)
D、(-3,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知遞增等差數(shù)列{an}中的a2,a5是函數(shù)f(x)=
1
3
x3-
7
2
x2
+10x+5的兩個(gè)極值點(diǎn).?dāng)?shù)列{bn}滿足,點(diǎn)(bn,Sn)在直線y=-x+1上,其中Sn是數(shù)列{bn}的前n項(xiàng)和.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)令cn=an•bn,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知某幾何體的直觀圖和三視圖如如所示,其正視圖為矩形,側(cè)視圖為等腰直角三角形,俯視圖為直角梯形.
(Ⅰ)證明:BN⊥平面C1B1N;
(Ⅱ)求三棱錐C1-CNB1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=f(x)=
a•3x-1-a
3x-1
為奇函數(shù).
(1)求a的值;
(2)求函數(shù)的定義域;
(3)求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-2x+2,的定義域與值域均為[1,b],則b=( 。
A、3B、2或3C、2D、1或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x=
1
3+2
2
,y=3-
2
,集合M={m|m=a+b
2
,a∈Q,b∈Q},那么x,y與集合M的關(guān)系為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案