【題目】已知函數(shù)(,其中e為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)若,求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)若函數(shù)有兩個(gè)不同的零點(diǎn).
(。┊(dāng)時(shí),求實(shí)數(shù)的取值范圍;
(ⅱ)設(shè)的導(dǎo)函數(shù)為,求證:.
【答案】(Ⅰ);(Ⅱ)(i);(ii)證明見(jiàn)解析.
【解析】
(Ⅰ)先對(duì)函數(shù)求導(dǎo),得到,根據(jù),由,即可求出單調(diào)遞增區(qū)間;
(Ⅱ)(。┫扔桑á瘢┑玫,分和兩種情況討論,用導(dǎo)數(shù)的方法研究函數(shù)的單調(diào)性,進(jìn)而可得出結(jié)果;
(ⅱ)先由題意得到,從而有,設(shè),,構(gòu)造函數(shù),根據(jù)導(dǎo)數(shù)的方法研究函數(shù)的單調(diào)性,進(jìn)而可證明結(jié)論成立.
(Ⅰ)由題意得,當(dāng)時(shí),令,得,函數(shù)的單調(diào)遞增區(qū)間為;
(Ⅱ)(i)由(Ⅰ)知,,
當(dāng)時(shí),,函數(shù)在R上單調(diào)遞增,不合題意,所以.
又時(shí),;,,
函數(shù)有兩個(gè)零點(diǎn),函數(shù)在遞減,函數(shù)在遞增, ,
,得.
(ⅱ)由題意得:
,兩式相減,得,
不妨設(shè),,則
令,,,
在上單調(diào)遞減,,即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)①若直線與的圖象相切, 求實(shí)數(shù)的值;
②令函數(shù),求函數(shù)在區(qū)間上的最大值.
(2)已知不等式對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線,過(guò)其焦點(diǎn)的直線與拋物線相交于、兩點(diǎn),滿足.
(1)求拋物線的方程;
(2)已知點(diǎn)的坐標(biāo)為,記直線、的斜率分別為,,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線是圓心在極軸上且經(jīng)過(guò)極點(diǎn)的圓,射線與曲線交于點(diǎn).
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)已知極坐標(biāo)系中兩點(diǎn),,若、都在曲線上,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,正方形的邊長(zhǎng)為4,,,把四邊形沿折起,使得平面,是的中點(diǎn),如圖②
(1)求證:平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣mx2,g(x)=+x,m∈R,令F(x)=f(x)+g(x).
(Ⅰ)當(dāng)m=時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若關(guān)于x的不等式F(x)≤mx﹣1恒成立,求整數(shù)m的最小值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的焦點(diǎn)坐標(biāo)是,過(guò)點(diǎn)且垂直于長(zhǎng)軸的直線交橢圓于兩點(diǎn),且.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)的直線與橢圓交于不同的兩點(diǎn),問(wèn)三角形內(nèi)切圓面積是否存在最大值?若存在,請(qǐng)求出這個(gè)最大值及此時(shí)直線的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下四個(gè)命題:①命題“若,則”的逆否命題為“若,則”;②“”是“”的充分不必要條件; ③若為假命題,則均為假命題;④對(duì)于命題使得,則為,均有.其中,真命題的個(gè)數(shù)是 ( )
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方體的棱長(zhǎng)為1,線段上有兩個(gè)動(dòng)點(diǎn),且,現(xiàn)有如下四個(gè)結(jié)論:
;平面;
三棱錐的體積為定值;異面直線所成的角為定值,
其中正確結(jié)論的序號(hào)是______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com