相關(guān)習(xí)題
 0  234240  234248  234254  234258  234264  234266  234270  234276  234278  234284  234290  234294  234296  234300  234306  234308  234314  234318  234320  234324  234326  234330  234332  234334  234335  234336  234338  234339  234340  234342  234344  234348  234350  234354  234356  234360  234366  234368  234374  234378  234380  234384  234390  234396  234398  234404  234408  234410  234416  234420  234426  234434  266669 

科目: 來(lái)源: 題型:填空題

18.過(guò)直線y=2與拋物線x2=8y的兩個(gè)交點(diǎn),并且與拋物線準(zhǔn)線相切的圓的方程為x2+(y-2)2=16.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

17.設(shè)點(diǎn)G,M分別是△ABC的重心和外心,A(-1,0),B(1,0),且$\overrightarrow{GM}∥\overrightarrow{AB}$.
(1)求點(diǎn)C的軌跡E的方程;
(2)已知點(diǎn)$D(-\frac{1}{2},0)$,是否存在直線,使過(guò)點(diǎn)(0,1)并與曲線E交于P,Q兩點(diǎn),且∠PDQ為鈍角.若存在,求出直線的斜率k的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

16.如圖1,由正四棱錐P-ABCD和正四棱柱ABCD-A1B1C1D1所組成的幾何體的三視圖如圖2.
(1)求證:PC⊥平面A1BD;
(2)求點(diǎn)P到平面A1BD的距離.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

15.在等比數(shù)列{an}中,a2=4,a6=8a3
(1)求an;
(2)令bn=log2an,求數(shù)列$\{\frac{1}{{{b_n}•{b_{n+1}}}}\}$的前n項(xiàng)和Tn

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

14.已知A(1,-1),B(4,0),C(2,2).平面區(qū)域D由所有滿足$\overrightarrow{AP}=λ\overrightarrow{AB}+μ\overrightarrow{AC}$(1<λ≤a,1<μ≤b)的點(diǎn)P(x,y)組成.若區(qū)域D的面積為8,則的a+4b最小值為9.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

13.已知點(diǎn)P(a,b)與點(diǎn)Q(1,0)在直線2x-3y+1=0的兩側(cè),給出下列命題:
①2a-3b+1>0;   ②a≠0時(shí),$\frac{a}$有最小值,無(wú)最大值;
③存在正實(shí)數(shù)m,使得$\sqrt{{a}^{2}+^{2}}$>m恒成立;
④a>0且a≠1,b>0時(shí),則$\frac{a-1}$的取值范圍是(-∞,-$\frac{1}{3}$)∪($\frac{2}{3}$,+∞).
其中正確的命題是( 。
A.①②B.②③C.②④D.③④

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

12.如圖,在三棱錐A-BCD中,DA,DB,DC兩兩垂直,且DB=DC,E為BC中點(diǎn),則$\overrightarrow{AE}•\overrightarrow{BC}$=0.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

11.已知F為拋物線y2=2px(p>0)的焦點(diǎn),過(guò)點(diǎn)F的直線與拋物線相交于A,B,則下列各式為定值的是(  )
A.|AF|+|BF|B.|AF|•|BF|C.|BF|2+|AF|2D.$\frac{1}{|AF|}+\frac{1}{|BF|}$

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

10.設(shè) a>b,則使$\frac{1}{a}>\frac{1}$成立的一個(gè)充要條件是( 。
A.b<0<aB.0<a<bC.b<a<0D.-1<b<0<a<1

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

9.如圖1,在Rt△ABC中,∠ABC=60°,∠BAC=90°,AD是BC上的高,沿AD將△ABC折成600的二面角B-AD-C,如圖2.
(1)證明:平面ABD⊥平面BCD.
(2)設(shè)E為BC的中點(diǎn),BD=2,求異面直線AE與BD所成的角的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案